
349

TroubleshootingChapter 11:	
by Dr. Albrecht Scriba

Introduction11.1	
Fixing VxVM related problems should never be a game of trial and error. If you are going
to mess around in the depths of volume management you need to know what you are
doing! For this reason we have decided to write this chapter as a training lesson more than
a direct hands-on guide so that you do your training long before you actually need the
skill. If you are not familiar with the procedures you should not start repairing serial split
brain conditions or other advanced errors in large-scale production systems. So take your
time and learn the troubleshooting techniques thoroughly first. There is enough material
in this chapter to make you an expert if you care to read it and actually do the exercises.
So sit down in front of your VxVM host, get yourself your favorite non-alcoholic beverage
and let's begin:

In order to test several troubleshooting scenarios, we need procedures to simulate
some kinds of disk outage, because we do not want to actually destroy disks – even if it
may take all of your self control not to destroy all those infernal machines with an axe!
First, we need to simulate a completely destroyed disk, then a disk temporarily unavailable,
but still physically healthy, and finally a disk with some unusable regions on it.

There are several ways to tell VxVM, that a disk is unusable unexpectedly from VxVM's
point of view. But note that we probably cannot power off the disk as long as we use disk
LUNs provided by a storage array. Other ways have in common, that some relevant data
structures are removed from the private region by OS provided tools which, of course, do
not inform VxVM, that the disk is regularly unreachable.

Starting with VxVM 5.0, removing the VxVM partitions from a disk does not make the

V. Herminghaus and A. Sriba, Storage Management in Data Centers,

DOI: 10.1007/978-3-540-85023-6_11, © Springer-Verlag Berlin Heidelberg 2009

350

Troubleshooting

disk unusable for VxVM as long as VxVM still has usable disk data within the kernel. To
tell VxVM to update or rebuild its kernel database, you must deport and import the cor-
responding disk group (which is not a realistic scenario) or restart or disable and re-enable
vxconfigd (which breaks the communication to vxnotify). Nevertheless, we will choose
the latter procedure, although it is not completely compatible with an actual disk failure.

Simulating a disk temporarily unreachable is performed by the usual steps alluded
above and presented below to make a disk unavailable, followed by the reconstruction of
the erased private region data. Unfortunately, we do not know a technique to simulate
a disk only partially damaged (only some regions on it are not accessible anymore). To
achieve this scenario, we would need a kernel layer concatenating real disks or array LUNs
to a "disk" visible to the usual disk drivers, and we would make one of those basic disks or
LUNs unavailable. Any suggestions are welcome!

To make a disk unusable for VxVM, use the following sequence of commands (you
should write a script out of them). We will store the private region data to be removed in
order to restore them later, if we want to simulate a temporary disk outage.

Sliced Disk
Get the slice number of the private region, store the first block of 128 kB of the private

region data at an appropriate location, overwrite that disk space with zeros, and finally
update the VxVM kernel database:

Slice=$(prtvtoc -h /dev/rdsk/c#t#d#s2 | awk '$2==15 {print $1}')
dd if=/dev/rdsk/c#t#d#s$Slice of=/var/tmp/c#t#d#s$Slice bs=128k count=1
dd if=/dev/zero of=/dev/rdsk/c#t#d#s$Slice bs=128k count=1
vxconfigd -k

CDS Disk
Nearly the same procedure, except for the different location of the private region (disk

offset of 128 kB):

dd if=/dev/rdsk/c#t#d#s2 of=/var/tmp/c#t#d#s2 bs=128k iseek=1 count=1
dd if=/dev/zero of=/dev/rdsk/c#t#d#s2 bs=128k oseek=1 count=1
vxconfigd -k

If you want to keep the PID of vxconfigd (for whatever reason), you may replace the
last command for both disk layouts by:

vxdctl disable
vxdctl enable

In order to get a disk we “destroyed” by this procedure usable again for VxVM, we only
need to write the stored private region data back to the appropriate slice.

Sliced Disk
Get the slice number of the private region (if you forgot it), and restore the first 128

kB of the private region:

351

Introduction

Slice=$(prtvtoc -h /dev/rdsk/c#t#d#s2 | awk '$2==15 {print $1}')
dd if=/var/tmp/c#t#d#s$Slice of=/dev/rdsk/c#t#d#s$Slice bs=128k

CDS Disk
Restore the stored private region data to the appropriate disk offset:

dd if=/var/tmp/c#t#d#s2 of=/dev/rdsk/c#t#d#s2 bs=128k oseek=1

During the boot process several VxVM daemons are started, mostly by the script
/etc/rc2.d/S95vxvm-recover (Solaris 9) and /lib/svc/method/vxvm-recover (Solaris
10) respectively. Two of those daemons are of special interest in case of a disk becom-
ing unexpectedly unavailable (for whatever reason): vxrelocd (default configuration) or
vxsparecheck. Both daemons (they must not run at the same time) perform automated
tasks to find subdisk or disk replacements for the damaged objects. We will discuss thor-
oughly their behavior in another part of this chapter. To get an understanding of what
happens, if disks encounter problems, we should stop them to prevent VxVM from any
automated configuration change.

pkill -9 -xu0 'vxrelocd|vxsparecheck'

Having terminated your VxVM troubleshooting tests, you should start the appropriate
daemon by issuing one of the following commands:

nohup /usr/lib/vxvm/bin/vxrelocd root &
nohup /usr/lib/vxvm/bin/vxsparecheck root &

352

Troubleshooting

Easy
Sailing

Vx

11.2	 Disk Outage
To test the following scenarios (disk persistently damaged or temporarily inaccessible),
please create a disk group containing at least two disks and two volumes in it, each of size
1 GB, one volume (called vol1 here) without redundancy, another volume (vol2) with two
plexes/mirrors:

vxdisksetup -i c4t1d0
vxdisksetup -i c4t2d0
vxdg init adg adg01=c4t1d0 adg02=c4t2d0
vxassist -g adg make vol2 1g nmirror=2 init=active alloc=adg01,adg02
vxassist -g adg make vol1 1g alloc=adg01

Issuing I/O to a volume (partially) built on a failed disk will, as a first reaction of the
system, show some console messages comparable to the following output example. The
disk driver gives up after some retries, then the VxVM Dynamic Multipathing driver (vxdmp)
disables all its paths to the disk driver (the example only shows one path) and successively,
since not a single path but the underlying disk has failed, its DMP node to the disk. Finally,
the plex I/O error is reported and the plex "detached" from the volume (still a volume mem-
ber, but in kernel state DISABLED) due to the failed subdisk belonging to it.

Sep 21 18:54:06 sols scsi: WARNING: /pci@1f,0/pci@1/scsi@2/sd@1,0 (sd47):
Sep 21 18:54:06 sols SCSI transport failed: reason 'incomplete': retrying
command
Sep 21 18:54:08 sols scsi: WARNING: /pci@1f,0/pci@1/scsi@2/sd@1,0 (sd47):
Sep 21 18:54:08 sols disk not responding to selection
[…]
Sep 21 18:54:25 sols vxdmp: NOTICE: VxVM vxdmp V-5-0-112 disabled path 32/0x178
belonging to the dmpnode 210/0x30
Sep 21 18:54:25 sols vxdmp: NOTICE: VxVM vxdmp V-5-0-111 disabled dmpnode

353

Disk Outage

210/0x30
Sep 21 18:54:25 sols vxio: WARNING: VxVM vxio V-5-0-151 error on Plex vol2-01
while writing volume vol2 offset 0 length 1
Sep 21 18:54:25 sols vxio: WARNING: VxVM vxio V-5-0-4 Plex vol2-01 detached from
volume vol2
Sep 21 18:54:25 sols vxio: WARNING: VxVM vxio V-5-0-386 adg01-01 Subdisk failed
in plex vol2-01 in vol vol2

As long as not strictly instructed to analyze private region access, VxVM keeps the
former physical disk state (I/O failure does not automatically imply disk failure). A device
scan or a reboot will change the device state to error (or online invalid, if you only
simulate the disk outage).

vxdisk list
[…]
c4t1d0s2 auto:cdsdisk - - online
c4t2d0s2 auto:cdsdisk adg02 adg online
[…]
- - adg01 adg failed was:c4t1d0s2
vxdisk scandisks
vxdisk list
[…]
c4t1d0s2 auto - - error
c4t2d0s2 auto:cdsdisk adg02 adg online
[…]
- - adg01 adg failed was:c4t1d0s2

What happens to the VxVM object states, if a disk becomes unavailable, but there are
still other healthy disks within the disk group? Of course, the disk group configuration is not
lost, because it is stored within multiple private regions (5 as default and if the disk group
contains at least 5 disks). VxVM will immediately synchronize the disk group configuration
to another disk with a previously inactive configuration, if the damaged disk had an active
one. Therefore, the disk group membership of the damaged disk regarding its disk media
name, its previous device access, its disk ID, and some other attributes are still known. On
the other side, the disk having lost its device access looses its physical membership of the
disk group too — in the words of the VxVM documentation: The disk is "detached" from the
disk group, as shown by the command output above or the vxprint output below:

vxprint -dtg adg
DM NAME DEVICE TYPE PRIVLEN PUBLEN STATE

dm adg01 - - - - NODEVICE
dm adg02 c4t2d0s2 auto 2048 35365968 -

All subdisks located on the disk which has become unavailable (state NODEVICE),
become unavailable as well (mode NODEVICE, abbreviated NDEV in the output of
vxprint).

354

Troubleshooting

vxprint -stg adg
SD NAME PLEX DISK DISKOFFS LENGTH [COL/]OFF DEVICE MODE
[…]
sd adg01-01 vol2-01 adg01 0 2097152 0 - NDEV
sd adg01-02 vol1-01 adg01 2097152 2097152 0 - NDEV
sd adg02-01 vol2-02 adg02 0 2097152 0 c4t2d0 ENA

What is the effect of subdisks having no underlying physical substrate anymore to
the virtual objects of volumes? The answer is quite simple and was already given by the
console output: Any plex containing a damaged subdisk is completely cut off from any I/O
(application or kernel initiated), even though there may be still other healthy subdisks in
it. The application state of the plex enters the NODEVICE state, the kernel state becomes
DISABLED, thus preventing the plex from any I/O. If this plex was the last healthy or the
only plex within the volume, that is, the volume now has no working instance of its address
space, the volume itself enters kernel state DISABLED (no I/O on the volume anymore) by
keeping the previous application state (normally ACTIVE).

vxprint -rtg adg
[…]
v vol1 - DISABLED ACTIVE 2097152 SELECT - fsgen
pl vol1-01 vol1 DISABLED NODEVICE 2097152 CONCAT - RW
sd adg01-02 vol1-01 adg01 2097152 2097152 0 - NDEV

v vol2 - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol2-01 vol2 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 vol2-01 adg01 0 2097152 0 c4t2d0 ENA
pl vol2-02 vol2 DISABLED NODEVICE 2097152 CONCAT - RW
sd adg02-01 vol2-02 adg02 0 2097152 0 - NDEV

Having physically replaced the damaged disk or chosen another unused disk instead,
there are several tools provided by VxVM to repair disk, disk group, subdisk, plex, and
volume states. To our experience, best known by most VxVM administrators is the ASCII
based interactive tool vxdiskadm (especially menus 4 "Remove a disk for replacement"
and 5 "Replace a failed or removed disk"). But in many cases, it means breaking a fly on
the wheel. Even for the mouse pushers and button pressers having the patience and the
memory and processor resources to start the vea GUI there are menu items to repair VxVM
object states. The command line interface provides some troubleshooting commands,
sometimes with obviously overlapping capabilities, thus producing still more trouble in
your head. Therefore, we strongly recommend the following list of low-level commands.
They are easy to understand, they are straight-forward, they perform only the necessary
steps, and they are capable to solve all kind of disk outage with only one small difference
at the beginning.

355

Disk Outage

Disk Permanently damaged11.2.1	

Let's start with a completely and irreversibly damaged disk. In case you want to simulate
that, look at the procedure and commands mentioned above. Do not forget to stop vxrelocd
or vxsparecheck at first! Be sure to "destroy" the disk which is common to both volumes!
Check the results by looking at the output of the vxdisk and vxprint commands.

1.	 The damaged disk must be replaced as the first step (in our virtual disk trouble-
shooting scenario, we do not need to do anything).

2.	 Since VxVM does not send repeated test I/Os on a failed disk, nothing happens to
the disk state for VxVM. In order to get the disk out of the currently mistaken error state,
we initiate a device scan. People usually issue the command:

vxdctl enable

VxVM will have a look at all disks visible to the OS. In large enterprise environments,
this could take several minutes. However, the main purpose of this command is to bring
vxconfigd in the fully enabled mode during the boot process, thus importing all disk groups
except for the already imported boot disk group. To specify only a subset of disks visible to
the OS you should use in our example:

vxdisk scandisks device=c4t1d0

As a result, the disk becomes online invalid, i.e. the disk is physically visible by its
VxVM device driver as a healthy disk, but there is no valid private region on it.

vxdisk list
[…]
c4t1d0s2 auto:none - - online invalid
c4t2d0s2 auto:cdsdisk adg02 adg online
[…]
- - adg01 adg failed was:c4t1d0s2

3.	 The new disk must be initialized in the same manner as you would initialize any
other disk for use by VxVM. The disk becomes completely online for VxVM, but is, of course,
still not a disk group member.

vxdisksetup -i c4t1d0 […]
vxdisk list
[…]
c4t1d0s2 auto:cdsdisk - - online
c4t2d0s2 auto:cdsdisk adg02 adg online
[…]
- - adg01 adg failed was:c4t1d0s2

356

Troubleshooting

4.	 The next step is a little bit tricky to understand. We cannot add the disk to the disk
group in the usual manner, because the disk media name (adg01 in our example) together
with its associated attributes already exists within the disk group configuration:

vxdg -g adg adddisk adg01=c4t1d0
VxVM vxdg ERROR V-5-1-559 Disk adg01: Name is already used

Choosing another disk media name does not help:

vxdg -g adg adddisk adg03=c4t1d0
vxdisk list
[…]
c4t1d0s2 auto:cdsdisk adg03 adg online
c4t2d0s2 auto:cdsdisk adg02 adg online
[…]
- - adg01 adg failed was:c4t1d0s2

Now we have a disk group with three configured disk members, one of them still failed
and detached from the disk group. Undo this stuff:

vxdg -g adg rmdisk adg03

We need a procedure to add a new device access (which may be the same as the
previous) to an already known disk group member by keeping (option -k) the configured
disk attributes:

vxdg -g adg -k adddisk adg01=c4t1d0
vxdisk list
[…]
c4t1d0s2 auto:cdsdisk adg01 adg online
c4t2d0s2 auto:cdsdisk adg02 adg online
[…]

Finally we got it! The disk group is completely recovered. By adding the new disk
to the disk group, all subdisks in NDEV state immediately become ENA (which stands
for ENABLED). Since we do not have damaged subdisks within the plexes anymore, their
application states NODEVICE are changed to RECOVER (IOFAIL if simulated): They have a
physically healthy substrate, but during the disk outage they lost I/O and do not contain
the current volume data. Therefore they remain in kernel state DISABLED.

vxprint -rtg adg
[…]
v vol1 - DISABLED ACTIVE 2097152 SELECT - fsgen
pl vol1-01 vol1 DISABLED RECOVER 2097152 CONCAT - RW
sd adg01-02 vol1-01 adg01 2097152 2097152 0 - ENA

v vol2 - ENABLED ACTIVE 2097152 SELECT - fsgen

357

Disk Outage

pl vol2-01 vol2 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 vol2-01 adg01 0 2097152 0 c4t2d0 ENA
pl vol2-02 vol2 DISABLED RECOVER 2097152 CONCAT - RW
sd adg02-01 vol2-02 adg02 0 2097152 0 - ENA

5.	 Redundant volumes may have had a working plex during all the time of the disk
outage (vol2 in our example). Plexes in DISABLED kernel state now can be resynchro-
nized:

vxrecover -g adg [-b] [vol2]
vxprint -rtg adg
[…]
v vol1 - DISABLED ACTIVE 2097152 SELECT - fsgen
pl vol1-01 vol1 DISABLED RECOVER 2097152 CONCAT - RW
sd adg01-02 vol1-01 adg01 2097152 2097152 0 - ENA

v vol2 - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol2-01 vol2 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 vol2-01 adg01 0 2097152 0 c4t2d0 ENA
pl vol2-02 vol2 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 vol2-02 adg02 0 2097152 0 - ENA

Skipping the volume names as parameters to vxrecover will synchronize all volumes
within the disk group affected by the damaged disk, but still in kernel state ENABLED. The
background option -b works as usual: Having started the kernel I/O threads to synchronize,
the command returns. Please remember: The volume carries on to be usable by the applica-
tion in a transactional manner during synchronization (here: atomic copy).

6.	 Volumes without a healthy plex, thus in kernel state DISABLED (in our example
vol1) cannot be recovered using vxrecover, because they do not have current or valid plex
data. For the same reason, they cannot be started regularly. Try it:

vxvol -g adg start vol1
VxVM vxvol ERROR V-5-1-1198 Volume vol1 has no CLEAN or non-volatile ACTIVE
plexes

Otherwise, a normal reboot would start such volumes with their applications, even
though the volumes do not provide any application data (we replaced the damaged disk).
We must forcibly start those volumes, so we can restore application data from backups:

vxvol -g adg -f start vol1
vxprint -rtg adg vol1
[…]
v vol1 - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol1-01 vol1 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-02 vol1-01 adg01 2097152 2097152 0 - ENA

358

Troubleshooting

Just to provide an overview, we repeat the steps to recover from complete disk outage
without extensive commentaries and misleading commands:

1.	 Replace the damaged disk.

2.	 Instruct VxVM to scan the disk access:
	 # vxdisk scandisks device=c#t#d#

3.	 Disk recovery:
	 # vxdisksetup -i c#t#d# […]

4.	 Disk group and subdisk recovery:
	 # vxdg -g <diskgroup> -k adddisk <failed-dmname>=c#t#d#

5.	 Recovery of ENABLED volumes:
	 # vxrecover -g <diskgroup> [-b] [<volumes>]

6.	 Start of DISABLED volumes:
	 # vxvol -g <diskgroup> -f start <volumes>

Disk Temporarily Unavailable11.2.2	

Having successfully repaired a damaged disk and the VxVM state changes, let's turn to a
temporary disk outage, e.g. due to temporary power outage of a disk or a disk array (simu-
lated by restoring the private region data).

Now the big surprise! To recover from temporary disk outage, we just need to modify
step 1 and skip step 3:

1.	 Instead of replacing the disk, we must make the disk available again, e.g. by
powering on the disk or the disk array. As already mentioned, VxVM does not monitor disk
availability (it only monitors path availability according to your DMP configuration), so
nothing happens to the VxVM disk and disk group states.

2.	 Initiate a test for device access to inform VxVM that the disk has come back.

vxdisk scandisks device=c4t1d0

Now, initializing the disk by vxdisksetup (step 3 above) would be a bad idea. It would
overwrite a still valid private region, possibly with a different size, thus maybe overwriting
application data on the first subdisk or at least placing the subdisks at different physical
disk offsets and, in consequence, spoiling still existing application data. Skip this step, by
all means!

Steps 3 to 5 are completely identical to steps 4 to 6 of the former procedure. Unlike a
damaged disk, a disk temporarily unavailable will provide the best possible application data
when forcibly starting a disabled volume.

To sum up once again, but for temporary disk outage:

1.	 Make the disk available again.

2.	 Instruct VxVM to scan the disk access:

359

Disk Outage

	 # vxdisk scandisks device=c#t#d#

3.	 Disk group and subdisk recovery:
	 # vxdg -g <diskgroup> -k adddisk <failed-dmname>=c#t#d#

4.	 Recovery of ENABLED volumes:
	 # vxrecover -g <diskgroup> [-b] [<volumes>]

5.	 Start of DISABLED volumes:
	 # vxvol -g <diskgroup> -f start <volumes>

Replacing an OS Disk11.2.3	

We still need to turn toward special problems when replacing a damaged OS disk. We
assume that you have mirrored your OS volumes, so you still have a running system.

Why is it not sufficient to execute the already described procedure to replace a failed
disk, if the new disk is intended to hold a mirror of the OS volumes? Well, during the first
stage of the boot process, the Open Boot Prom reads the disk VTOC to identify the boot
device partition carrying tag 2 and containing the root file system to be mounted later on
/. The kernel root device (this is not necessarily identical to the boot device) may not be
based upon a partition driver. But even in case your OS will be accessed by VxVM volumes,
the root device /pseudo/vxio@0:0 specified in /etc/system needs a partition for the root
file system to build a kernel RAM configured volume on it.

Therefore, if you are trying to replace a failed OS disk using the regular procedure, you
will encounter at least one, probably even two problems. First, you cannot boot from the
replaced disk because it has no partitions on it. Remember, mirroring volumes on a disk
does not mean mirroring a disk’s physical structure. So at least, we need to put appropri-
ate partitions over the subdisks created by volume mirroring. Secondly, since partitions are
always aligned to cylinder boundaries, offset and length of the original subdisks probably
do not fit to different disk hardware.

To avoid any problems like that, it is useful to remove subdisks configured on the
failed disk together with their associated plexes and to recreate the mirrors according
to the cylinder specifications of the new disk. We do not spoil any redundancy because,
due to the failed disk, we already lost volume redundancy. We only remove VxVM objects
currently not having a physical disk substrate. The following is the commented procedure
when replacing a failed OS disk:

1.	 Replace the damaged disk by a healthy one or select another free disk. Be sure to
use a disk providing the required space to mirror all volumes of the still working OS disk.

2.	 Have VxVM scan the new device.

vxdisk scandisks device=c#t#d#

3.	 Initialize the disk for VxVM use, that is, create a sliced disk layout which is
required for OS disks. If necessary, limit the size of the private region to 1 MB, for example
(VxVM 5.0 is built to create 32 MB as default).

360

Troubleshooting

vxdisksetup -i c#t#d# format=sliced [privlen=1m]

4.	 Add to the still known (we assume osdg02), but physically failed disk group mem-
ber a new (and possibly different) device access:

vxdg -g bootdg -k adddisk osdg02=c#t#d#

5.	 So far so good, no big difference to the standard procedure! But now, remove all
subdisks configured on the failed OS disk together with their associated plexes. Given the
standard output of vxprint, this is hard work, even harder if scripted. But the early devel-
opers of VxVM were obviously passionate Unix guys. They designed vxprint as a powerful
tool! An approach step by step:

List all plex names of the boot disk group:

vxprint -g bootdg -pn

List all subdisks configured on disk osdg02:

vxprint -g bootdg -se 'sd_dmname="osdg02"'

First combination: List all plex names having at least one associated subdisk on disk
osdg02:

vxprint -g bootdg -pne 'pl_sd.sd_dmname="osdg02"'

Now the final wizardry using Shell command substitution (poor who still does remove
the plexes command by command):

vxplex -g bootdg -o rm dis $(
 vxprint -g bootdg -pne 'pl_sd.sd_dmname="osdg02"')

6.	 Instead of volume recovery we add a mirror to the OS volumes being still active
on the other OS disk (we assume osdg01). The VxVM script vxmirror we execute takes care,
that the new subdisks are aligned to disk cylinder boundaries, and builds appropriate parti-
tions over these subdisks (for a detailed procedure with explanations see the “Technical
Deep Dive” part). Fortunately, vxmirror prints out a log of issued commands to support our
understanding of the procedure.

vxmirror -g bootdg osdg01 osdg02
! vxassist -g bootdg mirror rootvol osdg02
! vxassist -g bootdg mirror swapvol osdg02
! vxassist -g bootdg mirror var osdg02
! vxassist -g bootdg mirror opt osdg02
! vxbootsetup -g bootdg osdg02

The script vxmirror, as shown by the listed commands, mirrors all volumes built

361

Disk Outage

of subdisks on osdg01 which are currently not redundant. The second disk specification
osdg02 is optional and denotes the disk to use for the mirrors — mostly unnecessary
because we mostly have only two disks within the boot disk group. Furthermore, by invok-
ing vxbootsetup, it builds partitions on the new subdisks, writes a boot block on the root
partition (obviously as a fallback, because the volume mirroring as a raw device procedure
already did copy it), and creates, if missing, an alias entry in the OBP nvramrc (but not in
boot-device).

Maybe you remember: This step is completely identical to the procedure to add a
mirror to an encapsulated OS disk explained in chapter 10. The "Full Battleship" part will
add some remarks on creating a partition based vfstab as a boot process troubleshooting
prerequisite.

The summary of these steps:

1.	 Replace the failed OS disk.

2.	 Instruct VxVM to scan the disk access:
	 # vxdisk scandisks device=c#t#d#

3.	 Disk recovery:
	 # vxdisksetup -i c#t#d# format=sliced […]

4.	 Disk group and subdisk recovery:
	 # vxdg -g bootdg -k adddisk <failed-dmname>=c#t#d#

5.	 Remove all failed subdisks and their associated plexes:
	 # vxplex -g bootdg -o rm dis $(
	 vxprint -g bootdg -pne 'pl_sd.sd_dmname="<failed-dmname>"')

6.	 Add mirrors to the volumes and place partitions over the subdisks:
	 # vxmirror -g bootdg <active-dmname> [<failed-dmname>]

362

Troubleshooting

The Full Battleship

11.3	 Disk Outage in Detail

A Complete Disk Array Temporarily Unavailable11.3.1	

Failure of a single disk, whether totally or temporarily, is a scenario rarely occurring in
today’s data centers, except maybe of an OS disk. Most data centers rely on intelligent disk
arrays providing a configurable set of virtual LUNs based on the known RAID concepts. If
just one physical disk of the array fails, the disk array administrator is notified to replace
the failed disk, while the LUNs used by host applications remain fully accessible due to the
RAID based redundancy.

A more widespread failure is the temporary outage of a complete disk array, e.g. by
power failure of the disk array or of a site of a data center, or by loss of all paths to that
array. Bringing back the accessibility of the array to its client hosts leads maybe to a terribly
high number of LUNs detached from their disk groups (we assume the members of the disk
group spread over more than one array, so the disk group is not completely unavailable;
for the latter scenario see page 363). Of course, step number 3 explained above to recover
these disks detached from their disk groups (vxdg -k adddisk …) will work properly, but
that would mean an awful lot of commands to execute.

Well, fortunately, on Unix systems we have a powerful Shell. So it is quite easy to issue
a loop on all failed disks currently detached from their disk group, but at the same time
VxVM initialized by recovering their device access. To prevent unexpected results, we make
sure, that those disks are really identical to the already configured disk group members
and not freshly initialized disks with different physical properties. A simple way to check
the identity may be achieved by comparing the disk IDs. As explained on page 91 of the
Disk Group chapter each time a disk is initialized by VxVM, it is tagged by a unique disk ID
comprising the initialization date in Unix time format, an internal counter, and the initial-
izing VxVM host ID, separated by dots.

The following command lists the current disk ID associated with the physical device
access:

# vxdisk -s list c4t1d0	
[…]
diskid: 1213183912.30.sols

363

Disk Outage in Detail

[…]

To show the disk ID associated with the disk media name as part of the disk group
configuration, we use the vxprint command. Note that this command does not require
physical disk access. Since the VxVM kernel module vxspec is the source of imported disk
group information, we may execute it even against disks physically failed.

vxprint -g adg -F %diskid adg01
1213183912.30.sols

To demonstrate the necessary steps to recover multiple disks, we provide a simple code
fragment to recover all those disks currently detached due to a temporary failure by skip-
ping freshly initialized disks:

List all disks
vxdisk -q list |
Filter detached disks, print DMName, DGroup, last DAName
nawk '$1=="-" {sub(/^was:/,"",$NF); print $3,$4,$NF}' |
while read DMName DGroup DAName; do
 # Get current disk ID
 CurrDiskID=$(vxdisk -s list $DAName | nawk '$1=="diskid:" {print $2; exit}')
 # Get disk ID configured in disk group
 DGConfDiskID=$(vxprint -g $DGroup -F %diskid $DMName)
 # Not identical? Next disk
 [[$CurrDiskID != $DGConfDiskID]] && continue
 # Add device access
 vxdg -g $DGroup-k adddisk $DMName=$DAName
done

Since this task should happen more often than a single disk failure, VxVM provides a
script called vxreattach to recover a set of temporary failed disks. Its basic strategy looks
like the code fragment above, but it is, of course, surrounded by a lot of check commands,
not to forget the extensive copyright notes. Its usage is:

vxreattach [-r] [-b] <daname> [<daname> ...]

Adding the option -r also recovers all plexes within enabled volumes, which were dis-
abled (according to step 4 above). As usual, -b ("background") terminates the vxreattach
command after having started the kernel threads to synchronize the stale plexes.

A 11.3.2	 Disk Group Temporarily Inaccessible

Our previous topic assumed that the disk group configuration is still not lost. What happens
if all your disks holding the active disk group configuration become unavailable at once?
You might consider this a scenario rarely occurring. But sometimes your disk group is built
from disks of just one disk array. Are you ready to exclude a power failure of the disk array?

364

Troubleshooting

Even if you neatly spread your disks over more than one array, you cannot deny the possible
risk to loose your disk group configuration. If one array fails temporarily, VxVM automati-
cally switches all its active disk group configuration disk roles to the remaining array. If the
first mentioned disk array comes back, all active configuration disks are kept at the latter
array! Now that array suffers from a power failure or, even worse, gets damaged...

The current section deals with a temporary outage of the disk group configuration
disks (persistent loss will be explained later). No physical substrate for storing VxVM
objects, for logging object states, and for modifying attribute values is available. Volumes
using these disks will get I/O failures on their subdisks, thus VxVM disables the affected
plexes and volumes, if all of their plexes are disabled. You will see a lot of error messages on
the console sent from the device drivers and the vxdmp and vxio kernel modules (compare
page 352). Instead of our agitated expressions above, we may put oil on troubled waters
given this scenario: As long as VxVM keeps disk group configuration data in the kernel, the
disk group remains online in spite of some or all of its disks being inaccessible. There is, to
calm you down a little bit more, an easy way to store the disk group configuration held by
the kernel memory to still healthy, but currently inactive private regions. Simply make all
disks of the disk group to active configuration and log disks:

vxedit -g adg set nconfig=all adg
vxedit -g adg set nlog=all adg
vxdg list adg
[…]
copies: nconfig=all nlog=all
config: seqno=0.1457 permlen=1280 free=1273 templen=4 loglen=192
config disk c4t1d0s2 copy 1 len=1280 state=clean online
config disk c4t2d0s2 copy 1 len=1280 state=clean online
config disk c4t3d0s2 copy 1 len=1280 state=clean online
[…]
log disk c4t1d0s2 copy 1 len=192
log disk c4t2d0s2 copy 1 len=192
log disk c4t3d0s2 copy 1 len=192
[…]

Marking disks as active configuration disks will flush to them the disk group con-
figuration stored in the kernel. If you discard your kernel disk group configuration, e.g. by
restarting vxconfigd in order to re-read the non-existent physical disk group configuration,
before flushing it to other disks, you will encounter problems:

vxconfigd -k
VxVM vxconfigd ERROR V-5-1-583 Disk group adg: Reimport of disk group failed:
 Disk group has no valid configuration copies
vxdisk -g adg list
VxVM vxdisk ERROR V-5-1-607 Diskgroup adg not found
vxdisk list
DEVICE TYPE DISK GROUP STATUS
[…]
c4t1d0s2 auto:cdsdisk adg01 adg online dgdisabled

365

Disk Outage in Detail

c4t2d0s2 auto:cdsdisk adg02 adg online dgdisabled
[…]

There is only one way to recover a dgdisabled disk group: Reattach the disks, so that
at least one valid disk group configuration copy is accessible, and re-import (maybe forced)
the disk group (which requires application stop, if not already stopped).

vxdg deport adg
vxdg [-f] import adg
vxdisk -g adg list
DEVICE TYPE DISK GROUP STATUS
c4t1d0s2 auto:cdsdisk adg01 adg online
c4t2d0s2 auto:cdsdisk adg02 adg online
vxrecover -g adg -s [-b]

A Partially Failed Disk ("11.3.3	 Failing")

A scenario indeed rarely occurring is a partial disk failure, that is the disk is still visible,
but some regions on it are damaged. Given virtual LUNs this should not happen. A disk
whose public region is still accessible by VxVM, but nevertheless encountered I/O errors
due to unreadable subdisks, is not detached from the disk group, but remains a disk group
member. That disk is only marked as failing by VxVM (as shown in the output of vxdisk
and vxprint):

vxdisk -g adg list
DEVICE TYPE DISK GROUP STATUS
c4t1d0s2 auto:cdsdisk adg01 adg online failing
c4t2d0s2 auto:cdsdisk adg02 adg online
vxprint -dtg adg
DM NAME DEVICE TYPE PRIVLEN PUBLEN STATE

dm adg01 c4t1d0s2 auto 2048 35365968 FAILING
dm adg02 c4t2d0s2 auto 2048 35365968 -

The failing flag set by VxVM prohibits allocation of free space of this disk when
creating new subdisks during volume creation, when searching for subdisk replacement by
hot relocation, and so on.

If a disk gets partially damaged, VxVM sets the failing flag on it and marks affected
subdisks as FAIL (vxprint –t output, column MODE). But this is not a one-to-one condi-
tion. If you see the failing flag on a disk, you cannot conclude that the disk must be
partially damaged. In most cases, the cable connection to the disk is somewhat instable,
that is, you can issue I/O in general, but sometimes an I/O request fails. Therefore, the first
step is to determine, if the disk or the cabling to the disk is damaged.

If you determine, that you had cable problems, and you can fix it, you should remove
the misleading failing flag (this is never done automatically by VxVM):

366

Troubleshooting

vxedit -g adg set failing=off adg01

In case of a partially damaged disk, you should replace the disk as soon as possible.
Maybe there are still other usable subdisks on that disk, whose data you want to move to
another disk within the disk group. An easy way to do so is to execute:

vxevac -g <diskgroup> <dmname-to-evac> [<dmname-as-replacement> ...]

vxevac is a Shell script invoking vxassist move commands on volumes with subdisks
on the specified disk. Unfortunately, the script is designed to exit the evacuation process if
a volume move fails. In our case of a failing disk, this will happen for the damaged subdisk.
So you must move the other volumes manually:

vxassist -g <diskgroup> move <volume> alloc=\!<dmname-to-evac>,\
 [<dmname-as-replacement>,...]

In either case, the damaged subdisk will remain on the failing disk. How can you
replace that disk? Of course, you could simply perform a physical removal of the disk, thus
producing a completely failed disk within VxVM. This would send e-mails, trigger SNMP
consoles, and so on. That’s why we should use a procedure telling VxVM that we indeed do
want to remove the disk. This is a little bit tricky:

vxdg -g adg rmdisk adg01
VxVM vxdg ERROR V-5-1-552 Disk adg01 is used by one or more subdisks.
 Use -k to remove device assignment.

Of course, we cannot remove a disk group member still in use by subdisks, even if these
subdisks are physically unusable. But they are still known to the disk group configuration.
We need to keep (-k) the disk group membership and the configured disk attributes by
"detaching" the disk from the disk group, that is, to remove only the device assignment:

vxdg -g adg -k rmdisk adg01

This disk now looks like a failed disk except for the object states: REMOVED instead of
NODEVICE. Note that the failing flag is cleared by this procedure:

vxdisk list
DEVICE TYPE DISK GROUP STATUS
[…]
c4t1d0s2 auto:cdsdisk - - online
c4t2d0s2 auto:cdsdisk adg02 adg online
[…]
- - adg01 adg removed was:c4t1d0s2
vxprint -dtg adg
DM NAME DEVICE TYPE PRIVLEN PUBLEN STATE

dm adg01 - - - - REMOVED

367

Disk Outage in Detail

dm adg02 c4t2d0s2 auto 2048 35365968 -
vxprint -rtg adg
[…]
v vol1 - DISABLED ACTIVE 2097152 SELECT - fsgen
pl vol1-01 vol1 DISABLED REMOVED 2097152 CONCAT - RW
sd adg01-02 vol1-01 adg01 2097152 2097152 0 - RMOV

v vol2 - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol2-01 vol2 DISABLED REMOVED 2097152 CONCAT - RW
sd adg01-01 vol2-01 adg01 0 2097152 0 - RMOV
pl vol2-02 vol2 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 vol2-02 adg02 0 2097152 0 c4t2d0 ENA

The steps to replace the removed disk correspond exactly to the steps to replace a
failed disk, as described and explained on page 352 above. But maybe, in addition, you will
want to move back the subdisks to their original disk media location afterwards:

vxassist -g <diskgroup> move <volume> \!<dmname-as-replacement> <orig-dmname>

11.3.4	 Hot Relocation

VxVM provides two mutually exclusive mechanisms handling disk failures by automati-
cally searching for disk or subdisks replacement: vxrelocd or vxsparecheck. Our previous
tests simulating disk outage were unrealistic to some extent, for we stopped the running
instance of this process pair in order to understand the basic principles of disk recovery.
It is time we demonstrate and explain how these mechanisms work. The default process
starting with VxVM 3.0 is vxrelocd, so this is our first candidate.

The script vxrelocd, started into background by /etc/rc2.d/S95vxvm-recover (Solaris
9) or /lib/svc/method/vxvm-recover (Solaris 10), itself invokes vxnotify as a child pro-
cess by capturing and evaluating STDOUT of the latter process for disk and plex detach
messages (-f) awaiting 15 sec. (-w 15) after the last detach event before responding to
the failure.

ptree -a $(pgrep -xu0 vxrelocd)
1 /sbin/init -s
 2786 /sbin/sh - /usr/lib/vxvm/bin/vxrelocd root
 3747 /sbin/sh - /usr/lib/vxvm/bin/vxrelocd root
 3748 vxnotify -f -w 15

The following commands together with their output simulate a failed disk, dem-
onstrate the behavior of hot relocation and explain the steps necessary to recreate the
original configuration.

1.	 We create a mirrored (vol2) and a non-redundant volume (vol1), both having in
common a subdisk on disk adg01.

368

Troubleshooting

vxassist -g adg make vol2 1g layout=mirror nmirror=2 init=active \
 alloc=adg01,adg02
vxassist -g adg make vol1 1g alloc=adg01
vxprint -rtg adg
[…]
dm adg01 c1t1d0s2 auto 2048 122171136 -
dm adg02 c1t1d1s2 auto 2048 122171136 -
dm adg03 c1t1d2s2 auto 2048 122171136 -

v vol1 - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol1-01 vol1 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-02 vol1-01 adg01 2097152 2097152 0 c1t1d0 ENA

v vol2 - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol2-01 vol2 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 vol2-01 adg01 0 2097152 0 c1t1d0 ENA
pl vol2-02 vol2 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 vol2-02 adg02 0 2097152 0 c1t1d1 ENA

2.	 The disk failure is simulated by overwriting the private region and restarting
vxconfigd. Some seconds later, we notice an atomic copy synchronization thread to
resynchronize the plex of vol2 affected by the disk failure (for details see the "Technical
Deep Dive" section).

dd if=/dev/zero of=/dev/rdsk/c1t1d0s2 bs=128k oseek=1 count=1
vxconfigd –k
vxtask -g adg list
TASKID PTID TYPE/STATE PCT PROGRESS
 50555 50555 ATCOPY/R 28.61% 0/2097152/600064 PLXATT vol2 vol2-01 adg

3.	 As proved by the output of vxprint, vol1 has lost its single and last healthy plex,
no automatic recovery is possible, the volume is DISABLED. During resynchronization of
vol2, we already recognize that the failed plex vol2-01 got a new subdisk adg03-01 on
another disk (adg03). After synchronization has completed, the plex is a full member of the
volume, entering application state ENABLED and mode RW. Hot relocation has fulfilled its
primary task.

Note that in case of a more complicated plex layout (concatenating and/or striping of
subdisks) the whole affected plex becomes disabled due to the failed subdisk and must be
synchronized completely. Replacement on a per-subdisk level by hot relocation does not
imply resynchronization just on a per-subdisk base. Layering the volume subdisk by subdisk
(if possible) or at least column by column would help to reduce synchronization I/O. On the
other side, adding a DCL volume with its capability to track volume region changes does
not avoid full plex synchronization — strange enough!

vxprint -rtg adg
[…]
dm adg01 - - - - NODEVICE

369

Disk Outage in Detail

dm adg02 c1t1d1s2 auto 2048 122171136 -
dm adg03 c1t1d2s2 auto 2048 122171136 -

v vol1 - DISABLED ACTIVE 2097152 SELECT - fsgen
pl vol1-01 vol1 DISABLED NODEVICE 2097152 CONCAT - RW
sd adg01-02 vol1-01 adg01 2097152 2097152 0 - NDEV

v vol2 - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol2-01 vol2 ENABLED STALE 2097152 CONCAT - WO
sd adg03-01 vol2-01 adg03 0 2097152 0 c1t1d2 ENA
pl vol2-02 vol2 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 vol2-02 adg02 0 2097152 0 c1t1d1 ENA
vxprint -rtg adg
[…]
dm adg01 - - - - NODEVICE
dm adg02 c1t1d1s2 auto 2048 122171136 -
dm adg03 c1t1d2s2 auto 2048 122171136 -

v vol1 - DISABLED ACTIVE 2097152 SELECT - fsgen
pl vol1-01 vol1 DISABLED NODEVICE 2097152 CONCAT - RW
sd adg01-02 vol1-01 adg01 2097152 2097152 0 - NDEV

v vol2 - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol2-01 vol2 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg03-01 vol2-01 adg03 0 2097152 0 c1t1d2 ENA
pl vol2-02 vol2 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 vol2-02 adg02 0 2097152 0 c1t1d1 ENA

4.	 vxrelocd was invoked with the parameter root, specifying a mail recipient, mean-
ing root@localhost. You should extend the list of mail recipients according to your needs
by editing /etc/rc2.d/S95vxvm-recover (Solaris 9) or /lib/svc/method/vxvm-recover
(Solaris 10). During the process of hot relocation, several mails are sent (sorted in chrono-
logical order):

Subject: Volume Manager failures on host haensel
[…]
Failures have been detected by the VERITAS Volume Manager:

failed disks:
 adg01

failed plexes:
vol1-01
vol2-01

The Volume Manager will attempt to find spare disks, relocate failed
subdisks and then recover the data in the failed plexes.

370

Troubleshooting

Subject: Volume Manager failures on host haensel
[…]
Unable to relocate failed subdisk from plex vol1-01 because no
suitable mirror was found from which to recover data.

Subject: Volume Manager failures on host haensel
[…]
Attempting to relocate subdisk adg01-01 from plex vol2-01.
Dev_offset - length 2097152 dm_name adg01 da_name c1t1d0s2.
The available plex vol2-02 will be used recover the data.

Subject: Attempting VxVM relocation on host haensel
[…]
VERITAS Volume Manager is preparing to relocate for diskgroup adg.
Saving the current configuration in:
/etc/vx/saveconfig.d/adg.080928_095541.mpvsh

Subject: Attempting VxVM relocation on host haensel
[…]
Volume vol2 Subdisk adg01-01 relocated to adg03-01, but not yet recovered.

Subject: Volume Manager failures on host haensel
[…]
Recovery complete for volume vol2 in disk group adg.

5.	 Our final goal is still not reached. vol1 is further on unusable due to its DISABLED
kernel state. The failed disk adg01 should be reattached to the disk group. Although vol2
has regained its redundancy by implementing a previously free disk, we should move the
subdisk currently named adg03-01 back to its original location in order to completely
recover the former configuration. Since the latter task needs some further explanation, we
separate it (step 6) from the current section.

vxdisksetup -i c1t1d0
vxdg -g adg -k adddisk adg01=c1t1d0
vxvol -g adg -f start vol1
vxprint –rtg adg
[…]
dm adg01 c1t1d0s2 auto 2048 122171136 -
dm adg02 c1t1d1s2 auto 2048 122171136 -
dm adg03 c1t1d2s2 auto 2048 122171136 -

v vol1 - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol1-01 vol1 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-02 vol1-01 adg01 2097152 2097152 0 c1t1d0 ENA

v vol2 - ENABLED ACTIVE 2097152 SELECT - fsgen

371

Disk Outage in Detail

pl vol2-01 vol2 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg03-01 vol2-01 adg03 0 2097152 0 c1t1d2 ENA
pl vol2-02 vol2 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 vol2-02 adg02 0 2097152 0 c1t1d1 ENA

6.	 Our final task: placing the "hot relocated" subdisk to its original disk. We already
know several ways with specific advantages and disadvantages:

vxmake -g adg sd adg01-01 disk=adg01 offset=0 len=1g
vxsd -g adg -d mv adg03-01 adg01-01
vxedit -g adg rm adg03-01

Advantage: Full control on the position of the subdisk
Disadvantage: Where do we know the original location and name of the subdisk?

Furthermore: Some tricky work
Note: The option -d of the vxsd mv command discards the hot relocation information

stored as subdisk attributes, see below.

vxassist -g adg move vol2 alloc=\!adg03,adg01

Advantage: Not too much work, because on a per-volume base
Disadvantage: Once again, where do we know the original location and name of the

subdisk? No control on the position of the subdisk on the target disk, subdisks of the vol-
ume intentionally placed on adg03 are moved as well

vxevac -g adg adg03 adg01

Advantage: Just one simple command
Disadvantage: Once again, where do we know the original location and name of the

subdisk? No control on the position of the subdisk on the target disk, all subdisks on adg03
are moved

Fortunately, a subdisk provides an attribute pair designed to bail us out, i.e. to support
subdisk move tasks after hot relocation has taken place:

vxprint -g adg -m adg03-01
[…]
 orig_dmname=adg01
 orig_dmoffset=0
vxprint -g adg -F '%name %orig_dmname %orig_dmoffset' \
 -e 'sd_orig_dmname="adg01"'
adg03-01 adg01 0

The hot relocation process obviously stored the original disk media name and the pub-
lic region offset of the subdisk on that disk. It did not save as subdisk attribute values the
length of the original subdisk (in most cases identical to the current length, see note below)
and its name (a VxVM object together with all attribute values holds 256 bytes within the

372

Troubleshooting

private region, storing the former subdisk name would waste space). But recall a mail sent
by vxrelocd mentioning a configuration saving file under /etc/vx/saveconfig.d, where
you can extract the missing information from.

In case of disk group members carrying sliced layout, we may encounter some round-
ing-up of the length of the subdisk to disk cylinder boundaries. Note that the vxassist
default layout comprises diskalign:

vxassist help showattrs
#Attributes:
 layout=nomirror,nostripe,nomirror-stripe,nostripe-mirror,
nostripe-mirror-col,nostripe-mirror-sd,
noconcat-mirror,nomirror-concat,span,nocontig,raid5log,noregionlog,diskalign,
nostorage
[…]

We provide a commented code fragment to relocate subdisks to their original loca-
tion:

We need current subdisk name, original disk media name and offset, and length
Fields='%name %orig_dmname %orig_dmoffset %len'
Subdisk counter
((SdCount=0))

Print subdisk attributes, if generated by hot relocation
vxprint -g adg -se 'sd_orig_dmname!=""' -F "$Fields" |
while read SdName SdDisk SdOffset SdLen; do
 # New subdisk name, based on original disk name + "UR" + counter
 UrSdName=${SdDisk}-UR-$((SdCount+=1))
 # Recreate original subdisk
 vxmake -g adg sd $UrSdName disk=$SdDisk offset=$SdOffset len=$SdLen ||
 continue
 # Move subdisk content and swap plex association, discard hot reloc info
 vxsd -g adg -d mv $SdName $UrSdName || continue
 # Remove hot relocation generated subdisk
 vxedit -g adg rm $SdName
done

A somewhat similar procedure (see the "Technical Deep Dive" section) was imple-
mented into the VxVM script vxunreloc. While our code fragment relocated all subdisks to
their original location, vxunreloc just relocates subdisks originating from one disk specified
by a required command parameter. While we were bound to the exact subdisk positions,
vxunreloc is able to round up to disk specific cylinder boundaries (option -f). Finally,
vxunreloc allows for the specification of an alternate target disk (option -n).

vxunreloc -g adg adg01
vxtask -g adg list
TASKID PTID TYPE/STATE PCT PROGRESS

373

Disk Outage in Detail

 50568 ATCOPY/R 20.80% 0/2097152/436224 SDMV adg03-01 adg01-UR-001 adg
vxprint –rtg adg vol2
[…]
v vol2 - ENABLED ACTIVE 2097152 SELECT - fsgen
pl %1 vol2 ENABLED TEMPRM 2097152 CONCAT - WO
sd adg01-UR-001 %1 adg01 0 2097152 0 c1t1d0 ENA
pl vol2-01 vol2 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg03-01 vol2-01 adg03 0 2097152 0 c1t1d2 ENA
pl vol2-02 vol2 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 vol2-02 adg02 0 2097152 0 c1t1d1 ENA

After hot relocation has terminated, we could rename the subdisk:

vxprint –rtg adg vol2
[…]
v vol2 - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol2-01 vol2 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-UR-001 vol2-01 adg01 0 2097152 0 c1t1d0 ENA
pl vol2-02 vol2 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 vol2-02 adg02 0 2097152 0 c1t1d1 ENA
vxedit -g adg rename adg01-UR-001 adg01-01
vxprint -rtg adg vol2
[…]
v vol2 - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol2-01 vol2 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 vol2-01 adg01 0 2097152 0 c1t1d0 ENA
pl vol2-02 vol2 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 vol2-02 adg02 0 2097152 0 c1t1d1 ENA

The hot relocation procedure does not need disks specified as spare disks, any space
on any regular disk (see below) may serve as "spare parts inventory". But a disk marked as
spare disk will have higher priority for the implemented subdisk selection policy spare=yes
— but only if the volume move requires more than one disk (see "Technical Deep Dive").
If you need to restrict subdisk replacement only to spare disks, enter spare=only into
/etc/default/vxassist (spare=no would exclude spare disks from hot relocation).

If you want to exclude a disk from the "spare parts inventory" by keeping the default
selection policy spare=yes, e.g. in order not to degrade its performance, mark it as nohotuse.
Obviously, spare and nohotuse are mutually exclusive. We recall the commands:

vxedit -g adg set spare=on|off adg01
vxedit -g adg set nohotuse=on|off adg01

At first sight, the vxrelocd procedure looks "finely granulated", avoiding any unneces-
sary I/O and being capable to spread multiple subdisks originating from one failed disk to
several target disks in case we did not provide a spare disk of appropriate space. But at
second thought, what would you like to do with a disk partially unusable? Of course, you
would like to evacuate it as soon as possible. Evacuating means finding replacements for

374

Troubleshooting

ALL subdisks residing on the affected disk, not just for the failed subdisks. Then, you surely
would want to replace it by a new one and finally to relocate all moved subdisks.

Hot Spare11.3.5	

The legacy technique in VxVM 2.x, called "Hot spare", provided a procedure similar to what
we described in the last phrase of the antecedent paragraph and may be still reactivated
in lieu of hot relocation:

pkill -9 -xu0 vxrelocd
nohup /usr/lib/vxvm/bin/vxsparecheck root &
vi /etc/rc2.d/S95vxvm-recover (Solaris 9)
vi /lib/svc/method/vxvm-recover (Solaris 10)
[…]
# vxrelocd root &	 (commented out)
[…]
vxsparecheck root &	 (removed comment sign)
[…]

Hot spare works on a per-disk base: Each failed disk will be replaced by another disk
holding appropriate space to cover all subdisks of the failed disk. Replacing disks must be
marked as spare disks. For details, see the following example on our well-known volumes
vol1 and vol2:

1.	 We select a disk of the disk group to become a spare disk. Our tries to create a
volume demonstrate, that a spare disk is excluded from the list of generically available
disks as long as we do not explicitly allocate it by storage attributes.

vxdisk -g adg list
DEVICE TYPE DISK GROUP STATUS
c1t1d0s2 auto:cdsdisk adg01 adg online
c1t1d1s2 auto:cdsdisk adg02 adg online
c1t1d2s2 auto:cdsdisk adg03 adg online
vxedit -g adg set spare=on adg03
vxdisk -g adg list
DEVICE TYPE DISK GROUP STATUS
c1t1d0s2 auto:cdsdisk adg01 adg online
c1t1d1s2 auto:cdsdisk adg02 adg online
c1t1d2s2 auto:cdsdisk adg03 adg online spare
vxassist -g adg make demovol 1g layout=stripe ncol=3
VxVM vxassist ERROR V-5-1-435 Cannot allocate space for 2097152 block volume
vxassist -g adg make demovol 1g layout=stripe ncol=3 alloc=adg01,adg02,adg03
vxedit -g adg -rf rm demovol
vxprint –rtg adg
[…]
dm adg01 c1t1d0s2 auto 2048 122171136 -

375

Disk Outage in Detail

dm adg02 c1t1d1s2 auto 2048 122171136 -
dm adg03 c1t1d2s2 auto 2048 122171136 SPARE

v vol1 - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol1-01 vol1 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-02 vol1-01 adg01 2097152 2097152 0 c1t1d0 ENA

v vol2 - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol2-01 vol2 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 vol2-01 adg01 0 2097152 0 c1t1d0 ENA
pl vol2-02 vol2 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 vol2-02 adg02 0 2097152 0 c1t1d1 ENA

2.	 We "destroy" disk adg01 holding subdisks for both volumes in order to see how the
vxsparecheck daemon handles a disk failure. The first effect of a failed disk is of course,
independent on hot relocation or hot spare working or not, that it is detached from the
disk group, that all affected plexes enter kernel state DISABLED, and that volumes loos-
ing their last healthy plex become DISABLED as well. In addition to this basic procedure,
vxsparecheck will immediately mark subdisks to be placed on the spare disk as RLOC (for
"relocate", see the output of an additionally started vxnotify).

dd if=/dev/zero of=/dev/rdsk/c1t1d0s2 bs=128k oseek=1 count=8
vxconfigd –k
vxnotify -f -w 15
[…]
detach disk c1t1d0s2 dm adg01 dg adg dgid 1223834080.19.haensel
detach plex vol2-01 volume vol2 dg adg dgid 1223834080.19.haensel
relocate subdisk adg01-01 plex vol2-01 volume vol2 dg adg dgid
1223834080.19.haensel
disabled vol vol1 rid 0.1155 dgid 1223834080.19.haensel adg
detach plex vol1-01 volume vol1 dg adg dgid 1223834080.19.haensel
[…]
vxprint –rtg adg
[…]
dm adg01 - - - - NODEVICE
dm adg02 c1t1d1s2 auto 2048 122171136 -
dm adg03 c1t1d2s2 auto 2048 122171136 SPARE

v vol1 - DISABLED ACTIVE 2097152 SELECT - fsgen
pl vol1-01 vol1 DISABLED NODEVICE 2097152 CONCAT - RW
sd adg01-02 vol1-01 adg01 2097152 2097152 0 - NDEV

v vol2 - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol2-01 vol2 DISABLED NODEVICE 2097152 CONCAT - RW
sd adg01-01 vol2-01 adg01 0 2097152 0 - RLOC
pl vol2-02 vol2 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 vol2-02 adg02 0 2097152 0 c1t1d1 ENA

376

Troubleshooting

3.	 The second action of vxsparecheck is, after the default waiting period of 15
seconds, to exclusively reserve the spare disk and to forcibly remove the failed disk
(device access c1t1d0s2), both visible in command outputs only for few seconds. Then,
vxsparecheck swaps the names of the spare disk and the removed disk: The disk media
name adg01, previously belonging to c1t1d0s2, gets the new device access c1t1d2s2, while
adg03 enters the REMOVED state. The subdisks, previously storing their data on c1t1d0s2,
are now placed on c1t1d2s2. Since these subdisks get a physically healthy disk, the affected
plexes change their application state from NODEVICE to RECOVER (IOFAIL, if simulated).
The failed disk itself is then completely removed, even as a disk group member.

vxprint –dtg adg
[…]
dm adg01 - - - - NODEVICE
dm adg02 c1t1d1s2 auto 2048 122171136 -
dm adg03 c1t1d2s2 auto 2048 122171136 RESERVED
vxprint –dtg adg
[…]
dm adg01 c1t1d2s2 auto 2048 122171136 -
dm adg02 c1t1d1s2 auto 2048 122171136 -
dm adg03 - - - - REMOVED
vxprint –rtg adg
[…]
dm adg01 c1t1d2s2 auto 2048 122171136 -
dm adg02 c1t1d1s2 auto 2048 122171136 -

v vol1 - DISABLED ACTIVE 2097152 SELECT - fsgen
pl vol1-01 vol1 DISABLED RECOVER 2097152 CONCAT - RW
sd adg01-02 vol1-01 adg01 2097152 2097152 0 c1t1d2 ENA

v vol2 - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol2-01 vol2 DISABLED RECOVER 2097152 CONCAT - RW
sd adg01-01 vol2-01 adg01 0 2097152 0 c1t1d2 RLOC
pl vol2-02 vol2 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 vol2-02 adg02 0 2097152 0 c1t1d1 ENA

4.	 Finally, synchronization threads are started in order to bring the subdisks resid-
ing on the new device to the current volume states (if possible). The plex associated to
an ongoing ENABLED volume enter into the STALE state and, after resynchronization, into
ACTIVE. The non-redundant volume vol1 remains DISABLED.

vxtask –g adg list
TASKID PTID TYPE/STATE PCT PROGRESS
 50575 PARENT/R 0.00% 1/0(1) VXRECOVER adg01 adg
 50576 50576 ATCOPY/R 21.58% 0/2097152/452608 PLXATT vol2 vol2-01 adg
vxprint –rtg adg
[…]

377

Disk Outage in Detail

dm adg01 c1t1d2s2 auto 2048 122171136 -
dm adg02 c1t1d1s2 auto 2048 122171136 -

v vol1 - DISABLED ACTIVE 2097152 SELECT - fsgen
pl vol1-01 vol1 DISABLED RECOVER 2097152 CONCAT - RW
sd adg01-02 vol1-01 adg01 2097152 2097152 0 c1t1d2 ENA

v vol2 - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol2-01 vol2 ENABLED STALE 2097152 CONCAT - WO
sd adg01-01 vol2-01 adg01 0 2097152 0 c1t1d2 RLOC
pl vol2-02 vol2 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 vol2-02 adg02 0 2097152 0 c1t1d1 ENA
vxprint –rtg adg
[…]
v vol1 - DISABLED ACTIVE 2097152 SELECT - fsgen
pl vol1-01 vol1 DISABLED RECOVER 2097152 CONCAT - RW
sd adg01-02 vol1-01 adg01 2097152 2097152 0 c1t1d2 ENA

v vol2 - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol2-01 vol2 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 vol2-01 adg01 0 2097152 0 c1t1d2 ENA
pl vol2-02 vol2 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 vol2-02 adg02 0 2097152 0 c1t1d1 ENA

5.	 Like vxrelocd, vxsparecheck was invoked with the parameter root (or with an
extended list of mail recipients) and dispatched two mails during our failure and recovery
example (sorted in chronological order):

Subject: Volume Manager failures on host haensel
[…]
VxVM vxsparecheck NOTICE V-5-2-191 Failures have been detected by the VERITAS
Volume Manager:

failed disks:
 adg01

failed plexes:
 vol1-01
 vol2-01

failed subdisks:

failed volumes:
 vol1
VxVM vxsparecheck ERROR V-5-2-533
The Volume Manager will attempt to find hot-spare disks to replace any

378

Troubleshooting

failed disks and attempt to resyncrhonize the data in the failed plexes
from plexes on other disks.

VxVM vxsparecheck ERROR V-5-2-330
The data in the failed volumes listed above is no longer available. It
will need to be restored from backup.

Subject: Attempted VxVM recovery on host haensel
[…]
VxVM vxsparecheck INFO V-5-2-279
Replacement of disk adg01 in group adg with disk device
c1t1d2s2 has successfully completed and recovery is under way.

VxVM vxsparecheck ERROR V-5-2-373 The following volumes:

vol1

occupy space on the replaced disk, but have no other enabled mirrors
on other disks from which to perform recovery. These volumes must have
their data restored.
VxVM vxsparecheck INFO V-5-2-434
To restore the contents of any volumes listed above, the volume should
be started with the command:

 vxvol -f start <volume-name>

and the data restored from backup.

6.	 Unlike vxunreloc for vxrelocd, the final, manual recovery after disk replacement
is not supported by a VxVM script. So we "replace" and recover the "failed" disk and restore
the original configuration (if necessary): The subdisk replacement in vol2 is moved back to
the previous device access. vol1, holding no reasonable application data, is best recovered
by forcibly deleting the subdisk and adding a new one located on the new disk (a subdisk
move would mean synchronization of unusable data, so why bother?).

vxedit -g adg rename adg01 adg03
vxdisksetup –i c1t1d0
vxdg -g adg adddisk adg01=c1t1d0
vxdisk -g adg list
DEVICE TYPE DISK GROUP STATUS
c1t1d0s2 auto:cdsdisk adg01 adg online
c1t1d1s2 auto:cdsdisk adg02 adg online
c1t1d2s2 auto:cdsdisk adg03 adg online
vxassist -g adg -b move vol2 alloc=\!adg03,adg01
vxtask -g adg list
TASKID PTID TYPE/STATE PCT PROGRESS

379

Disk Outage in Detail

 50581 ATCOPY/R 25.78% 0/2097152/540672 SDMV adg01-01 adg01-02 adg
vxprint -rtg adg vol2
[…]
v vol2 - ENABLED ACTIVE 2097152 SELECT - fsgen
pl %2 vol2 ENABLED TEMPRM 2097152 CONCAT - WO
sd adg01-02 %2 adg01 0 2097152 0 c1t1d0 ENA
pl vol2-01 vol2 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 vol2-01 adg03 0 2097152 0 c1t1d2 ENA
pl vol2-02 vol2 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 vol2-02 adg02 0 2097152 0 c1t1d1 ENA
vxsd -g adg -f -o rm dis adg01-02
vxprint -rtg adg vol1
[…]
v vol1 - DISABLED ACTIVE 2097152 SELECT - fsgen
pl vol1-01 vol1 DISABLED(SPARSE) RECOVER 0 CONCAT - RW
vxdg -g adg free adg01
DISK DEVICE TAG OFFSET LENGTH FLAGS
adg01 c1t1d0s2 c1t1d0 2097152 120073984 -
vxmake -g adg sd adg01-02 disk=adg01 offset=2097152 len=2097152
vxsd -g adg assoc vol1-01 adg01-02
vxprint -rtg adg vol1
[…]
v vol1 - DISABLED ACTIVE 2097152 SELECT - fsgen
pl vol1-01 vol1 DISABLED RECOVER 2097152 CONCAT - RW
sd adg01-02 vol1-01 adg01 2097152 2097152 0 c1t1d0 ENA
vxvol -g adg -f start vol1
vxedit -g adg set spare=on adg03
vxprint -rtg adg
[…]
dm adg01 c1t1d0s2 auto 2048 122171136 -
dm adg02 c1t1d1s2 auto 2048 122171136 -
dm adg03 c1t1d2s2 auto 2048 122171136 SPARE

v vol1 - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol1-01 vol1 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-03 vol1-01 adg01 2097152 2097152 0 c1t1d0 ENA

v vol2 - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol2-01 vol2 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-02 vol2-01 adg01 0 2097152 0 c1t1d0 ENA
pl vol2-02 vol2 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 vol2-02 adg02 0 2097152 0 c1t1d1 ENA

380

Troubleshooting

11.4	 Synchronization Tasks

Optimizing Resynchronization11.4.1	

If a disk has failed and was replaced by a new one, the affected plexes do not contain
reasonable application data, they must be completely synchronized. If a disk or a disk
array is only inaccessible for a certain period and then comes back, those plexes contain
stale application data. Depending on the duration of inaccessibility and the amount of
application write I/Os, they are still physically synchronized in many or most regions of
the volume.

Given a simple mirrored volume, VxVM does not know where the synchronization of
regions may be skipped, so a complete synchronization is necessary. It would be a good
idea to mark regions affected by write I/Os starting from the time when the plexes became
disabled. After bringing online the temporarily failed disks by the procedure explained
above, VxVM would need to synchronize only some regions of the plexes with a noticeable
reduction of sync I/O.

A data change object (DCO) of version 20 together with its associated data change log
volume (DCL) is capable not only to perform fast mirror synchronization of snapshots, not
only to provide instant or space optimized snapshots, and not only to serve as a replace-
ment to the former plex based Dirty region log. It also tracks the regions of write I/Os to a
mirrored volume, if one or more of its plexes become unavailable. Let’s test it!

1.	 We create three mirrored volumes within a disk group consisting of two disks. The
first volume (vol1) will keep the nologging layout, vol2 gets a DCO of version 0, while vol3
is supplied with a DCO of version 20. Note the different commands to create the different
versions of a DCO. Also note the nice wizardry of vxprint to generate a formatted output
of some specified attributes (option –F). Finally note that the DCL volume to DCO version
0 is smaller in size (144 sectors) than the volume to version 20 (544 sectors). The latter is
designed to fulfill more tasks than the former (see chapter 9 on snapshots).

vxassist -g adg make vol1 1g nmirror=2 init=active
vxassist -g adg make vol2 1g nmirror=2 init=active
vxassist -g adg addlog vol2 logtype=dco

The last two commands may be shortened to:

vxassist -g adg make vol2 1g layout=mirror,log nmirror=2 logtype=dco \
 init=active

The third volume:

vxassist -g adg make vol3 1g nmirror=2 init=active
vxsnap -g adg prepare vol3
vxprint -rLtg adg

381

Synchronization Tasks

[…]
V NAME RVG/VSET/CO KSTATE STATE LENGTH READPOL PREFPLEX UTYPE
PL NAME VOLUME KSTATE STATE LENGTH LAYOUT NCOL/WID MODE
SD NAME PLEX DISK DISKOFFS LENGTH [COL/]OFF DEVICE MODE
DC NAME PARENTVOL LOGVOL
[…]
v vol1 - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol1-01 vol1 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 vol1-01 adg01 0 2097152 0 c4t1d0 ENA
pl vol1-02 vol1 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 vol1-02 adg02 0 2097152 0 c4t2d0 ENA

v vol2 - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol2-01 vol2 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-02 vol2-01 adg01 2097152 2097152 0 c4t1d0 ENA
pl vol2-02 vol2 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-02 vol2-02 adg02 2097152 2097152 0 c4t2d0 ENA
dc vol2_dco vol2 vol2_dcl

v vol2_dcl - ENABLED ACTIVE 144 SELECT - gen
pl vol2_dcl-01 vol2_dcl ENABLED ACTIVE 144 CONCAT - RW
sd adg01-04 vol2_dcl-01 adg01 6291456 144 0 c4t1d0 ENA
pl vol2_dcl-02 vol2_dcl ENABLED ACTIVE 144 CONCAT - RW
sd adg02-04 vol2_dcl-02 adg02 6291456 144 0 c4t2d0 ENA

v vol3 - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol3-01 vol3 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-03 vol3-01 adg01 4194304 2097152 0 c4t1d0 ENA
pl vol3-02 vol3 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-03 vol3-02 adg02 4194304 2097152 0 c4t2d0 ENA
dc vol3_dco vol3 vol3_dcl

v vol3_dcl - ENABLED ACTIVE 544 SELECT - gen
pl vol3_dcl-01 vol3_dcl ENABLED ACTIVE 544 CONCAT - RW
sd adg01-05 vol3_dcl-01 adg01 6291600 544 0 c4t1d0 ENA
pl vol3_dcl-02 vol3_dcl ENABLED ACTIVE 544 CONCAT - RW
sd adg02-05 vol3_dcl-02 adg02 6291600 544 0 c4t2d0 ENA
F='%{name:-10} %{version:2} %{drl:-4} %{drllogging:-4}'
vxprint -g adg -F "$F" vol2_dco vol3_dco
vol2_dco 0 off off
vol3_dco 20 on on

2.	 We make a disk of the disk group used by all volumes unavailable for VxVM,
perform write I/O of 1 MB on each volume, and recover the temporarily failed disk and the
disk group.

382

Troubleshooting

dd if=/dev/rdsk/c4t1d0s2 of=/var/tmp/c4t1d0s2 bs=128k iseek=1 count=8
dd if=/dev/zero of=/dev/rdsk/c4t1d0s2 bs=128k oseek=1 count=8
vxconfigd -k
vxdisk list
DEVICE TYPE DISK GROUP STATUS
[…]
c4t1d0s2 auto:cdsdisk - - online invalid
c4t2d0s2 auto:cdsdisk adg02 adg online
[…]
- - adg01 adg failed was:c4t1d0s2
for i in 1 2 3; do
 dd if=/dev/zero of=/dev/vx/rdsk/adg/vol$i bs=128k count=8; done
dd if=/var/tmp/c4t1d0s2 of=/dev/rdsk/c4t1d0s2 bs=128k oseek=1
vxdisk scandisks device=c4t1d0
vxdisk list
DEVICE TYPE DISK GROUP STATUS
[…]
c4t1d0s2 auto:cdsdisk - - online
c4t2d0s2 auto:cdsdisk adg02 adg online
[…]
- - adg01 adg failed was:c4t1d0s2
vxdg -g adg -k adddisk adg01=c4t1d0
vxdisk list
DEVICE TYPE DISK GROUP STATUS
[…]
c4t1d0s2 auto:cdsdisk adg01 adg online
c4t2d0s2 auto:cdsdisk adg02 adg online
[…]

3.	 Before resynchronizing the volumes, we reset the I/O counters of VxVM for the
disk group. We expect five synchronization tasks: three tasks for the three top-level vol-
umes, and two tasks for the two mirrored DCL volumes. After resynchronization, we check
for mirror sync I/Os, i.e. for I/O types “Atomic Copy” and “Read-Writeback”. Since we had
a failed disk producing one disabled plex within each volume, we do not expect Read-
Writebacks, but you never know...

vxstat -g adg -r
vxrecover -bg adg
vxtask list
TASKID PTID TYPE/STATE PCT PROGRESS
 364 PARENT/R 0.00% 5/0(1) VXRECOVER
 365 365 ATCOPY/R 00.98% 0/2097152/20480 PLXATT vol1 vol1-01 adg
vxtask list
TASKID PTID TYPE/STATE PCT PROGRESS
 364 PARENT/R 20.00% 5/1(1) VXRECOVER
 369 369 ATCOPY/R 16.02% 0/2097152/335872 PLXATT vol2 vol2-01 adg

383

Synchronization Tasks

vxstat -g adg -f ab
 ATOMIC COPIES READ-WRITEBACK
TYP NAME OPS BLOCKS AVG(ms) OPS BLOCKS AVG(ms)
vol vol1 1024 2097152 71.3 0 0 0.0
vol vol2 1024 2097152 61.8 0 0 0.0
vol vol2_dcl 1 144 20.0 0 0 0.0
vol vol3 1 2048 80.0 0 0 0.0
vol vol3_dcl 1 544 30.0 0 0 0.0

Indeed, the command output exactly provides the information we expected before:
five synchronization tasks mentioned in the first output line of the two vxtask list com-
mand examples after the title. But the most important information lies in the output of
vxstat: Without mirror logging or with a DCO version 0, the volume was resynchronized
completely: 1024 I/O operations at 2048 sectors (= 1 MB) each, totally 1 GB. However, the
third volume was synchronized just with 1 I/O at 1 MB (remember, we wrote 1 MB new
data on each volume). The DCL volumes, due to their small size not furnished with another
DCO structure, are synchronized completely.

Controlling Synchronization 11.4.2 Behavior

In most cases, VxVM selects the appropriate synchronization mechanisms to recreate full
volume redundancy. If a plex is in a state known to specify stale or inaccessible data (such
as NODEVICE, IOFAIL, RECOVER, STALE, OFFLINE), while there is at least one healthy plex
(ACTIVE, CLEAN, under certain circumstances EMPTY and SNAPDONE) within the volume,
then VxVM uses the “ Atomic Copy” procedure, thus reading the volume based on the
healthy plexes and writing these data to the bad plex. Application write I/Os are written
to all plexes, read requests are just taken from the healthy plexes before or during resyn-
chronization.

ACTIVE STALE
Sync

Application Read Application Write

"Atomic Copy" SynchronizationFigure 11-1:

384

Troubleshooting

If all plexes are in a healthy state, but VxVM knows, that there is need to synchro-
nize (e.g. the devopen volume attribute is on, because the system crashed, while there
was write I/O to the raw device, or the volume with its file system was mounted), VxVM
does not spoil the still existing redundancy on nearly all parts of the volume (as some less
intelligent volume manager software does by marking one data copy as bad). All healthy
plexes remain healthy, for load balancing reasons the synchronization direction changes
every 256 MB, and for performance reasons the round robin read policy remains in use. To
provide a transactional raw device, VxVM immediately writes back every read I/O to the
other plexes to ensure data integrity when reading those data blocks once again, but prob-
ably from the other plex. Therefore, this technique is called “Read-Writeback”. The topic of
Read-Writeback synchronisation is difficult to understand, and you want to refer to the
additional coverage in the Volume chapter, page 132.

ACTIVE ACTIVE

Application Read Application Write

Sync

Sync

W
riteback

"Figure 11-2: Read-Writeback" Synchronization

If all plexes of a volume are in bad states, VxVM does nothing except for forbidding to
start the volume in the regular way. Manual intervention is required.

Even if VxVM could synchronize the volume’s plexes due to the existence of a healthy
plex, we sometimes do not want the synchronization method VxVM would choose. So we
need ways to modify plex states to specify another synchronization procedure or even to
completely skip plex synchronization.

The ways to change plex states are somewhat tricky, and the scenarios making such
modifications necessary sometimes academic. We will provide some realistic scenarios to
show examples for the use of the vxmend command and some vxvol keywords.

 Atomic Copy Redirection: Data Recovery from Offlined Plexes
It is a good idea to freeze volume data in a mirrored volume by offlining a data plex

when applying software upgrades or patches, modifying the application configuration, and

385

Synchronization Tasks

so on. Upgrades and patches could make things even worse, a misconfigured application
cannot be started. A data plex may be offlined at any time, independent from the volume
state:

vxprint -rtg adg vol
[…]
v vol - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol-01 vol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 vol-01 adg01 0 2097152 0 c1t1d0 ENA
pl vol-02 vol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 vol-02 adg02 0 2097152 0 c1t1d1 ENA
vxmend -g adg off vol-02
vxprint -rtg adg vol
[…]
v vol - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol-01 vol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 vol-01 adg01 0 2097152 0 c1t1d0 ENA
pl vol-02 vol DISABLED OFFLINE 2097152 CONCAT - RW
sd adg02-01 vol-02 adg02 0 2097152 0 c1t1d1 ENA

In case the upgraded, patched, or modified data work fine, we soon should synchronize
the offlined plex according to the current volume data in order to establish data redun-
dancy.

vxmend -g adg on vol-02
vxprint -rtg adg vol
[…]
v vol - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol-01 vol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 vol-01 adg01 0 2097152 0 c1t1d0 ENA
pl vol-02 vol DISABLED STALE 2097152 CONCAT - RW
sd adg02-01 vol-02 adg02 0 2097152 0 c1t1d1 ENA

Of course, the plex contains stale data and is therefore still disabled for any I/O. Atomic
copy resynchronization is not started automatically, we issue volume recovery.

vxrecover -g adg -b vol
vxtask -g adg list
TASKID PTID TYPE/STATE PCT PROGRESS
 251 251 ATCOPY/R 11.62% 0/2097152/243712 PLXATT vol vol-02 adg

During synchronization, the synchronized plex is available for application write I/Os
(kernel state ENABLED), but blocked for read access (mode WO).

vxprint -rtg adg vol
[…]
v vol - ENABLED ACTIVE 2097152 SELECT - fsgen

386

Troubleshooting

pl vol-01 vol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 vol-01 adg01 0 2097152 0 c1t1d0 ENA
pl vol-02 vol ENABLED STALE 2097152 CONCAT - WO
sd adg02-01 vol-02 adg02 0 2097152 0 c1t1d1 ENA

If we crashed the application due to the “high enterprise quality” of a patch, our
offlined plex provides most probably the most up-to-date application data. So we must
switch the synchronization direction. It is impossible and indeed of no use to enable access
to another data set (the offlined plex), while the volume is in use. This would spoil any
transactional device characteristics. Consequently, we need to stop application and volume
first. Our example unmounts the file system on the volume, but you may assume any other
required application termination in order to free the raw device from I/O.

umount /mnt
vxvol -g adg stop vol
vxprint -rtg adg vol
[…]
v vol - DISABLED CLEAN 2097152 SELECT - fsgen
pl vol-01 vol DISABLED CLEAN 2097152 CONCAT - RW
sd adg01-01 vol-01 adg01 0 2097152 0 c1t1d0 ENA
pl vol-02 vol DISABLED OFFLINE 2097152 CONCAT - RW
sd adg02-01 vol-02 adg02 0 2097152 0 c1t1d1 ENA

The corrupted data set (vol-01) is still marked as healthy by VxVM (CLEAN), the correct
data set (vol-02) is still in OFFLINE state. We want to mark vol-01 as STALE and vol-02 as
CLEAN or ACTIVE to force the desired synchronization direction.

vxmend -g adg on vol-02
vxprint -rtg adg vol
[…]
v vol - DISABLED CLEAN 2097152 SELECT - fsgen
pl vol-01 vol DISABLED CLEAN 2097152 CONCAT - RW
sd adg01-01 vol-01 adg01 0 2097152 0 c1t1d0 ENA
pl vol-02 vol DISABLED STALE 2097152 CONCAT - RW
sd adg02-01 vol-02 adg02 0 2097152 0 c1t1d1 ENA
vxmend -g adg fix clean vol-02
VxVM vxmend ERROR V-5-1-1182 Volume vol contains plexes in the CLEAN state

VxVM does not like your attack to its knowledge of missing data integrity, because two
clean plexes would mean a fully synchronized, healthy volume. The keyword active instead
of clean would work, but then the volume would be marked as NEEDSYNC, thus evoking
read-writeback synchronization. Our task needs another procedure.

vxmend -g adg fix stale vol-01
vxmend -g adg fix clean vol-02
vxprint -rtg adg vol
[…]

387

Synchronization Tasks

v vol - DISABLED CLEAN 2097152 SELECT - fsgen
pl vol-01 vol DISABLED STALE 2097152 CONCAT - RW
sd adg01-01 vol-01 adg01 0 2097152 0 c1t1d0 ENA
pl vol-02 vol DISABLED CLEAN 2097152 CONCAT - RW
sd adg02-01 vol-02 adg02 0 2097152 0 c1t1d1 ENA

This works! The roles of good and stale plex are swapped. Now enable and resynchronize
the volume in the correct direction. Both commands listed below are in this case absolutely
identical. Finally, restart your application.

vxvol -g adg [-o bg] start vol
vxrecover -g adg [-b] -s vol
mount -F <fstype> /dev/vx/dsk/adg/vol /mnt

Atomic Copy Instead of Read Writeback: One Plex Is Few I/Os Farther
than the Other
We assume a total, but cascading power outage in a data center. The volume, mirrored
across two LUN arrays, first looses on the physical layer one data plex and some seconds
later the other one. Due to the timeouts of the stateless Fibre Channel protocol, both plexes
keep their healthy ACTIVE state, but the latter contains more current data. After power-
ing on the data center, VxVM would resynchronize the volume using the read-writeback
method. If we cannot recover the volume data generated during the last seconds before
the total power outage by application recovery strategies (e.g. the online redo logs of an
Oracle database reside on the same LUN arrays), we can tell VxVM, that we do not have
two healthy plexes, but just one. Since the boot process already starts resynchronization
(/etc/rc2.d/S95vxvm-recover Solaris 9, /lib/svc/method/vxvm-recover Solaris 10), we
must boot into the single user mode or milestone. Remember: /etc/rcS.d/S35vxvm-startup1
for the OS disk group and /etc/rcS.d/S85vxvm-startup2 (Solaris 9, same file names in
Solaris 10 under /lib/svc/method) for other disk groups respectively just start volumes
without synchronization, marking them as NEEDSYNC and thus forcing read writeback
application I/Os (vxrecover -s -n).

ok boot -s
[…]
vxprint -rtg adg vol
[…]
v vol - ENABLED NEEDSYNC 2097152 SELECT - fsgen
pl vol-01 vol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 vol-01 adg01 0 2097152 0 c1t1d0 ENA
pl vol-02 vol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 vol-02 adg02 0 2097152 0 c1t1d1 ENA
vxmend -g adg off vol-02
vxmend -g adg on vol-02
vxprint -rtg adg vol
[…]
v vol - ENABLED NEEDSYNC 2097152 SELECT - fsgen

388

Troubleshooting

pl vol-01 vol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 vol-01 adg01 0 2097152 0 c1t1d0 ENA
pl vol-02 vol DISABLED STALE 2097152 CONCAT - RW
sd adg02-01 vol-02 adg02 0 2097152 0 c1t1d1 ENA
exit

The continued boot process will now resynchronize the volume using the atomic copy
method (/etc/rc2.d/S95vxvm-recover or /lib/svc/method/vxvm-recover):

vxrecover -b -o iosize=64k > /dev/null

Force Atomic Copy Synchronization: I/O on Disks Outside of VxVM
As long as all disk I/Os are managed by the VxVM kernel, its integrity states are correct.
But VxVM does not hinder the device drivers to accept I/Os issued outside of VxVM. It is
quite easy to execute a dd command immediately on partition drivers, generating mirror
inconsistency, where VxVM believes mirrors to be coherent. As soon as possible, we must
mark the damaged plex as a bad plex. Probably you should stop the application to prevent it
from decisions based on wrong data. But you are not forced by VxVM to stop the volume.

vxmend -g adg off vol-02
vxmend -g adg on vol-02
vxprint -rtg adg vol
[…]
v vol - ENABLED NEEDSYNC 2097152 SELECT - fsgen
pl vol-01 vol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 vol-01 adg01 0 2097152 0 c1t1d0 ENA
pl vol-02 vol DISABLED STALE 2097152 CONCAT - RW
sd adg02-01 vol-02 adg02 0 2097152 0 c1t1d1 ENA
vxrecover -g adg [-b] vol

One command less, but executable only against a stopped volume:

vxmend -g adg fix stale vol-02
vxprint -rtg adg vol
[…]
v vol - DISABLED CLEAN 2097152 SELECT - fsgen
pl vol-01 vol DISABLED CLEAN 2097152 CONCAT - RW
sd adg01-01 vol-01 adg01 0 2097152 0 c1t1d0 ENA
pl vol-02 vol DISABLED STALE 2097152 CONCAT - RW
sd adg02-01 vol-02 adg02 0 2097152 0 c1t1d1 ENA
vxrecover -g adg [-b] -s vol

We will discuss another example in a boot troubleshooting section (booting without
VxVM).

389

Synchronization Tasks

Force Read-Writeback Synchronization: Suspicious Plex Data
You fear differences in very small regions of your mirrors, because you forgot to disable
disk track caching, and your data center suffered a power outage. Small data sets still
not written physically to the disk platters but already committed to the volume layer (the
devopen attribute is already set to off) could be dangerous for your application. Therefore,
you decide to synchronize the mirrors, but you do not know, which mirror is good and
which is bad (probably they are both affected by data loss). To keep redundancy, you prefer
to choose the read-writeback method.

vxprint -rtg adg vol
[…]
v vol - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol-01 vol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 vol-01 adg01 0 2097152 0 c1t1d0 ENA
pl vol-02 vol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 vol-02 adg02 0 2097152 0 c1t1d1 ENA
vxrecover -g adg vol

The recovery command will not resynchronize the volume, because, according to VxVM,
the volume is still synchronized. Otherwise, you would see the volume state NEEDSYNC.
Since a read-writeback synchronization could change the current volume content (a data
block was read from the first plex by the application, but is synchronized from the second
plex by VxVM), the volume must be stopped.

vxvol -g adg stop vol
vxmend -g adg fix empty vol
vxprint -rtg adg vol
[…]
v vol - DISABLED EMPTY 2097152 SELECT - fsgen
pl vol-01 vol DISABLED EMPTY 2097152 CONCAT - RW
sd adg01-01 vol-01 adg01 0 2097152 0 c1t1d0 ENA
pl vol-02 vol DISABLED EMPTY 2097152 CONCAT - RW
sd adg02-01 vol-02 adg02 0 2097152 0 c1t1d1 ENA

The volume now looks and behaves like a freshly created volume. No plex has priority
over the other one, so VxVM will choose read-writeback synchronization.

vxvol -g adg [-o bg] start avol
or:

vxrecover -g adg [-b] -s avol
vxtask -g adg list
TASKID PTID TYPE/STATE PCT PROGRESS
 176 RDWRBACK/R 69.73% 0/2097152/1462272 VOLSTART vol adg

390

Troubleshooting

Skip Synchronization: Volume Data Unusable
As already explained in the Volume chapter on page 120, you may create new mirrored
volumes without synchronization either by a sequence of vxmake commands and finally by
starting the DISABLED/EMPTY volume executing:

vxvol -g adg init active vol

Or you may issue the vxassist command with a special parameter:

vxassist -g adg make vol 1g layout=mirror init=active

In case VxVM tells you that the volume must be synchronized, but you are not inter-
ested in the volume data, because you want to restore the volume data from a backup
image, you could believe it would be sufficient to mark the volume as DISABLED/EMPTY:

vxprint -rtg adg vol
[…]
v vol - ENABLED NEEDSYNC 2097152 SELECT - fsgen
pl vol-01 vol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 vol-01 adg01 0 2097152 0 c1t1d0 ENA
pl vol-02 vol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 vol-02 adg02 0 2097152 0 c1t1d1 ENA
vxvol -g adg stop vol
vxprint -rtg adg vol
[…]
v vol - DISABLED NEEDSYNC 2097152 SELECT - fsgen
pl vol-01 vol DISABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 vol-01 adg01 0 2097152 0 c1t1d0 ENA
pl vol-02 vol DISABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 vol-02 adg02 0 2097152 0 c1t1d1 ENA
vxmend -g adg fix empty vol
VxVM vxmend ERROR V-5-1-1211 Volume vol has plexes in the ACTIVE state, use -o
force
vxmend -g adg -o force fix empty vol
vxprint -rtg adg vol
[…]
v vol - DISABLED EMPTY 2097152 SELECT - fsgen
pl vol-01 vol DISABLED EMPTY 2097152 CONCAT - RW
sd adg01-01 vol-01 adg01 0 2097152 0 c1t1d0 ENA
pl vol-02 vol DISABLED EMPTY 2097152 CONCAT - RW
sd adg02-01 vol-02 adg02 0 2097152 0 c1t1d1 ENA
vxvol -g adg init active vol
vxprint -rtg adg vol
[…]
v vol - ENABLED NEEDSYNC 2097152 SELECT - fsgen
pl vol-01 vol ENABLED ACTIVE 2097152 CONCAT - RW

391

Restore of Lost VxVM Objects

sd adg01-01 vol-01 adg01 0 2097152 0 c1t1d0 ENA
pl vol-02 vol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 vol-02 adg02 0 2097152 0 c1t1d1 ENA

Oops! VxVM did not forget the need for synchronization. The volume looked like a
freshly created volume, but only within the standard output of vxprint. A volume attri-
bute kept the information for recovery: cdsrecover_seqno, set to a value not equal to 0
(mostly 1). Unfortunately, this attribute value cannot be reset to 0. We only know one
way to dupe VxVM: Store the volume attributes recursively into a file, edit the value of
cdsrecover_seqno, rebuild the volume and initialize it by skipping synchronization:

vxprint -rmg adg vol > /tmp/vol
vxedit -g adg -rf rm vol
vi /tmp/vol
[…]
 cdsrecover_seqno=0
[…]
vxmake -g adg -d /tmp/vol
vxvol -g adg init active vol
vxprint -rtg adg vol
[…]
v vol - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol-01 vol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 vol-01 adg01 0 2097152 0 c1t1d0 ENA
pl vol-02 vol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 vol-02 adg02 0 2097152 0 c1t1d1 ENA

Restore of Lost VxVM Objects11.5	

vxprint and vxmake Capabilities11.5.1	

Often, the cause of trouble does not stem from the machines, but sits or stands before
them. So we need to consider what to do, if we inadvertently removed objects from the
VxVM configuration.

Fortunately, we can use a special output format of vxprint to store the disk group
configuration in a manner to be read by vxmake in order to rebuild the objects. The follow-
ing table shows in a comparison of the syntax, how both commands specify the appropriate
VxVM objects:

392

Troubleshooting

VxVM Object Type vxprint options vxprint type
abbreviations

vxmake type
abbreviations

Volume -v v vol

Plex -p pl plex

Subdisk -s sd sd

Subvolume -s sv sd

Data Change Object -c dc dco

Snap Object -c sp -

Cache Object -C co cache

Subcache -s sc sd

Replicated Volume Group -V rv rvg

Remote Link -P rl rlink

Volume Set -x vt vset

The vxprint command is able to store all disk group configuration data together with
hardware related information, such as the current disk device access path. Unfortunately,
the corresponding vxmake command cannot define disk and disk group attribute values
(therefore not shown in the table above). So we take in mind two restrictions: First, we
must initialize the required disks and create the disk group out of them with the well-
known commands, before we can read the still missing disk group configuration into
vxmake. Furthermore, we need to eliminate any disk and disk group information before
sending the stored configuration to vxmake.

To begin with the latter task: To print all disk group configuration data, including the
disk and disk group objects, vxprint provides two options: -a to print attribute-value pairs
word by word, one terribly long line for each object. This output is useful for scripting
purposes, because Unix provides many tools to split into lines and words (e.g. awk/nawk/
gawk, the Shell itself), but rarely into separate paragraphs. The other option, -m, creates an
output containing the same information, but differently formatted: attribute-value pairs
line by line, grouped together to sometimes long paragraphs (only the first line to an object
is not indented).

The output of vxprint -m is understood by vxmake. We still need to skip disk and disk
group data by choosing appropriate options. This is much more comfortable than generat-
ing the whole output and then erasing the wrong lines by using an editor. Recalling the
options table above, we enter the following command:

vxprint -g <diskgroup> -m -vpscCVPx > <configfile>

Restore of All Volumes in a Disk Group11.5.2	

If necessary, we initialize disks and recreate the empty disk group manually. We must take
care, that the position and length of the private region corresponds to the former settings.
Otherwise, the subdisks would be recreated at a different position on the disks, thus provid-

393

Restore of Lost VxVM Objects

ing unusable volume data and possibly failing in creating subdisks at a position outside of
the physical disk, if the private region becomes larger than the former one. Then, we read
the stored configuration into vxmake:

vxmake -g <diskgroup> -d <configfile>

That is already nearly all! All disk group objects are recreated at exactly the same
physical and virtual location and with the same attribute values. The single exception (we
might expect this from our knowledge to the vxmake command): Volumes and plexes are
still stopped in the state pair DISABLED/EMPTY. To start the volumes together with read-
writeback mirror or RAID5 plex synchronization, simply issue:

vxvol -g <diskgroup> startall

To skip synchronization (the disk group was cleanly deported, the volumes were
stopped, or we do not care for any previous data):

vxvol -g <diskgroup> init active <volume-list>

Some pages before, we demonstrated other ways to specify the synchronization
method against the assumptions of VxVM. You may apply them as well.

Restore of Some Volumes in a Disk Group11.5.3	

In case of a lost volume, while the disk group and other objects are still configured and
alive, we must filter only those objects and attributes belonging to that volume from the
stored configuration file. First the good news: vxprint is capable to read the disk group
configuration not only from the kernel (the default), not only from the physical private
region (/usr/lib/vxvm/diag.d/vxprivutil), but also from a configuration file in the
vxprint -m output format. We only add the option -D together with the source. Currently
only STDIN, specified with the minus sign, is implemented. Thanks to the Shell, we redirect
STDIN to the configuration file (the following two commands are identical in result):

vxprint -rLtg <diskgroup> -D - < <configfile>
cat <configfile> | vxprint -rLtg <diskgroup> -D -

Of course, any other output formatting options besides -rLt used above are allowed,
even -m. So, by specifying the volume name together with the “related” option -r, we final-
ly get the desired filtered volume output to be piped into vxmake (instead of a configuration
file, vxmake -d understands the minus sign as its argument, now reading from STDIN):

vxprint -rmg <diskgroup> -D - <volume> < <configfile> |
 vxmake -g <diskgroup> -d -

We mentioned “good news”, because there are, unfortunately, also bad news: This
powerful filtering procedure currently does not work in VxVM 5.0 (VxVM 4.x is fine), it

394

Troubleshooting

produces a core dump due to segmentation fault (jump into not included memory regions).
As an acceptable work-around for VxVM 5.0, we propose to store the disk group configura-
tion twice. First, the whole disk group configuration data (except for disks and disk group,
of course):

vxprint -g <diskgroup> -m -vpscCPVx > <configfile>.<diskgroup>

And, additionally, all volume configuration data, volume by volume, into different
configuration files:

for Volume in $(vxprint -g <diskgroup> -vne 'v_layered=off && v_islog=no'); do
 vxprint -rmg <diskgroup> $Volume > <configfile>.<diskgroup>.$Volume; done

To restore an inadvertently removed volume, use the volume specific configuration file
without further filtering by the vxprint command:

vxmake -g <diskgroup> -d <configfile>.<diskgroup>.<volume>

The manual page of vxmake also mentions another configuration format understood by
vxmake. This format exactly corresponds to the command line options of vxmake, excluding
the vxmake command itself and the disk group option -g with its argument. Since there is
no easy way to store the current disk group configuration using this layout, we skip further
details.

Restore of the Entire Disk Group Configuration11.5.4	

The boot process (/etc/rc2.d/S95vxvm-recover or /lib/svc/method/vxvm-recover) starts
another VxVM daemon of some interest for disk group disaster scenarios:

ptree $(pgrep -xu0 vxconfigbackupd)
501 /sbin/sh - /usr/lib/vxvm/bin/vxconfigbackupd
 1323 /sbin/sh - /usr/lib/vxvm/bin/vxconfigbackupd
 1324 vxnotify

Comparable to the vxrelocd/vxnotify daemon pair, vxconfigbackupd is informed
by vxnotify about every VxVM event, even about small configuration changes. See the
following example: vxnotify is started on one terminal, while we execute a simple plex
attach to a volume on another terminal.

vxnotify
connected
[…]
vxassist -g adg mirror vol
# vxnotify	 (continued)
change dg adg dgid 1223834080.19.sols
change dg adg dgid 1223834080.19.sols

395

Restore of Lost VxVM Objects

change dg adg dgid 1223834080.19.sols
^C

The first message belongs to the creation of a new plex together with its subdisk(s),
the second indicates the begin, the last the end of plex synchronization.

Now, vxconfigbackupd captures the output of vxnotify and triggers in case of con-
figuration change events a new backup of the new (!) configuration. You will find the
backups under /etc/vx/cbr/bk:

cd /etc/vx/cbr/bk
ls -l
drwxr-xr-x 2 root root 1536 Jun 12 12:25 adg.1213178377.21.sols
drwxr-xr-x 2 root root 1536 Oct 12 21:14 adg.1223834080.19.sols
drwxr-xr-x 2 root root 1536 Oct 12 10:08 osdg.1198162173.6.sols

Each subfolder is named after the name and the ID of the related disk group.
Concerning the disk group adg, we recognize two versions. Remember: Only the disk group
ID is unique. Obviously, the disk group adg was once unavailable and freshly created under
the same name, but naturally not with the same disk group ID. The content of the latter
adg folder is (given VxVM 5.0):

cd adg.1223834080.19.sols
ls -l
-rw-r--r-- 1 root root 655360 Oct 12 21:14 1223834080.19.sols.binconfig
-rw-r--r-- 1 root root 8035 Oct 12 21:14 1223834080.19.sols.cfgrec
-rw-r--r-- 1 root root 1695 Oct 12 21:14 1223834080.19.sols.dginfo
-rw-r--r-- 1 root root 3190 Oct 12 21:14 1223834080.19.sols.diskinfo

The first file with extension binconfig is nearly a physical copy of the disk and disk
group configuration part of the private region. The next file (cfgrec) contains the output of
vxprint -mg adg (including disk and disk group objects and attributes), the third (dginfo)
some VxVM version and particularly disk group information, the last file (diskinfo) details
to the disk group members.

Note the large size of the private region copy file. Our disk group example deals with
private regions only 1 MB in size. In VxVM 5.0, the default size of the private region is 32
MB, so in enterprise environments providing many disk groups the binconfig files occupy
large amounts of storage of the root file system. That's why only the last known configura-
tion is stored by VxVM 5.0, while VxVM 4.x holds the last six versions as a source to recover
former disk group configurations.

Well, that is a nice thing. We just prepare the disk group in order to get some experi-
ence on the procedure to recover a disk group. Unfortunately, a simple vxdg destroy com-
mand will also remove the backup of the disk group configuration (there are other ways to
recreate a destroyed disk group, see below). So we temporarily rename the backup folder
and make sure that no private region data exist anymore on the disks.

cd /etc/vx/cbr/bk
ls -d adg.*

396

Troubleshooting

adg.1213178377.21.sols adg.1223834080.19.sols
mv adg.1223834080.19.sols adg.1223834080.19.sols.renamed
vxdg destroy adg
mv adg.1223834080.19.sols.renamed adg.1223834080.19.sols
vxdiskunsetup c4t1d0
vxdiskunsetup c4t2d0
dd if=/dev/zero of=/dev/rdsk/c4t1d0s2 bs=128k oseek=1 count=8
dd if=/dev/zero of=/dev/rdsk/c4t2d0s2 bs=128k oseek=1 count=8
/usr/lib/vxvm/diag.d/vxprivutil dumpconfig /dev/rdsk/c4t1d0s2
VxVM vxprivutil ERROR V-5-1-1735 scan operation failed:
 Format error in disk private region
/usr/lib/vxvm/diag.d/vxprivutil dumpconfig /dev/rdsk/c4t2d0s2
VxVM vxprivutil ERROR V-5-1-1735 scan operation failed:
 Format error in disk private region

Are you convinced that neither in the kernel memory nor on the disks any usable disk
group data are available? Our single hope lies in the configuration backup. Look at the
following commands, how to (and how not to) reactivate the disk group (the option -p
signifies "precommit").

vxconfigrestore -p adg
VxVM vxconfigrestore ERROR V-5-2-3717 There are two backups that have the same
diskgroup name adg with different diskgroup id :
 1213178377.21.sols -- backup at Thu Jun 12 12:25:42 MEST 2008
 1223834080.19.sols -- backup at Sun Oct 12 21:14:26 MEST 2008

VxVM vxconfigrestore INFO V-5-2-3721 Use diskgroup_id to do the restoration.
vxconfigrestore -p 1223834080.19.sols
Diskgroup 1223834080.19.sols configuration restoration started

Installing volume manager disk header for c4t1d0s2 ...
c4t1d0s2 disk format has been changed from cdsdisk to none.
Installing volume manager disk header for c4t2d0s2 ...
c4t2d0s2 disk format has been changed from cdsdisk to none.

1223834080.19.sols's diskgroup configuration is restored (in precommit state).
Diskgroup can be accessed in read only and can be examined using
vxprint in this state.

Run:
 vxconfigrestore -c 1223834080.19.sols ==> to commit the restoration.
 vxconfigrestore -d 1223834080.19.sols ==> to abort the restoration.

We notice that the disks of the disk group were initialized to some extent (whatever
volume manager disk header means, see below; note also the erroneously inverted direc-
tion in the expression from cdsdisk to none). Commands exploring kernel information on
the disk group work as usual, even modification of the configuration is possible, obviously

397

Restore of Lost VxVM Objects

unrestricted (including mirror synchronization):

vxdisk -g adg list
DEVICE TYPE DISK GROUP STATUS
c4t1d0s2 auto:cdsdisk adg01 adg online
c4t2d0s2 auto:cdsdisk adg02 adg online
vxprint -rtg adg
[…]
v vol - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol-01 vol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 vol-01 adg01 0 2097152 0 c4t1d0 ENA
pl vol-02 vol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 vol-02 adg02 0 2097152 0 c4t2d0 ENA
vxassist -g adg -b make newvol 1g layout=mirror
vxtask -g adg list
TASKID PTID TYPE/STATE PCT PROGRESS
 177 RDWRBACK/R 44.43% 0/2097152/931840 VOLSTART newvol adg

So what do they mean with the expression Diskgroup can be accessed in read only
in the output of vxconfigrestore? Well, read access to the volumes is possible, but write
access is blocked. Therefore, you may analyze the content of the volumes in order to check
the proper position of the subdisks.

dd if=/dev/vx/rdsk/adg/vol of=/dev/null count=1
1+0 records in
1+0 records out
dd if=/dev/zero of=/dev/vx/rdsk/adg/vol count=1
write: Permission denied
1+0 records in
1+0 records out

What became of the physical state of the disks? Well, the partitions for VxVM were
recreated. In VxVM 4.x (our example), the private region got initialized, but just with the
disk group and the disk media object on disks formerly being inactive configuration disks
(c4t1d0s2). In addition, volume related objects are written to the private region of previ-
ously active config disks (c4t2d0s2). VxVM 5.0 does not write any disk group configuration
on the disks at this stage, working just with the kernel configuration.

prtvtoc -h /dev/rdsk/c4t1d0s2
 2 5 01 0 35368272 35368271
 7 15 01 0 35368272 35368271
prtvtoc -h /dev/rdsk/c4t2d0s2
 2 5 01 0 35368272 35368271
 7 15 01 0 35368272 35368271
/usr/lib/vxvm/diag.d/vxprivutil dumpconfig /dev/rdsk/c4t1d0s2 |
 awk '!/^[#]/ && NF>0'
VxVM vxconfigdump ERROR V-5-1-624 Error (File block 16): Invalid magic number

398

Troubleshooting

dg adg
dm adg01
/usr/lib/vxvm/diag.d/vxprivutil dumpconfig /dev/rdsk/c4t2d0s2 |
 awk '!/^[#]/ && NF>0'
dg adg
dm adg01
dm adg02
plex vol1-01
dm adg03
sd adg02-01
sd adg03-01
vol vol1
plex vol1-02
sd adg01-02

As indicated by the output of the command vxconfigrestore -p, the disk group
configuration must be committed (-c) or discarded (-d). Assuming a proper disk group con-
figuration, we commit it. Redundant volumes are synchronized (even newvol once again)
in order to ensure data integrity. Any requests to modify synchronization behavior may be
achieved by modification of the plex states during the precommit stage (see the examples
beginning on page 383).

vxconfigrestore -c 1223834080.19.sols
Committing configuration restoration for diskgroup 1223834080.19.sols

1223834080.19.sols's diskgroup configuration restoration is committed.
vxprint -rtg adg newvol
[…]
v newvol - ENABLED SYNC 2097152 SELECT - fsgen
pl newvol-01 newvol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 newvol-01 adg01 0 2097152 0 c4t1d0 ENA
pl newvol-02 newvol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 newvol-02 adg02 0 2097152 0 c4t2d0 ENA
vxtask -g adg list
TASKID PTID TYPE/STATE PCT PROGRESS
 179 RDWRBACK/R 89.06% 0/2097152/1867776 VOLSTART newvol adg

Restore of a Destroyed Disk Group11.5.5	

VxVM protects against most erroneous actions destroying volume data. Dissociating a plex
(that is, an instance of the volume address space) from its volume will fail, if this plex
was the last healthy plex in the volume (unless you specified vxplex -o force dis). All
the same, you cannot dissociate a subdisk from its plex except by vxsd -o force dis.
Removing a volume by VxVM interfaces is absolutely impossible as long as the volume
attribute devopen is set to on (current I/O on raw device or file system mounted).

Nevertheless, it happens from time to time (hopefully not too often) that you destroyed

399

Restore of Lost VxVM Objects

VxVM objects you wanted or should have wanted to keep. The former sections explained
and demonstrated how to recreate them out of configuration files and how to restore a
disk group, if their (active configuration) disks were destroyed. Our task now is to provide
a way to recover from an inadvertently destroyed disk group configuration.

vxdisk -g adg list
DEVICE TYPE DISK GROUP STATUS
c1t1d0s2 auto:cdsdisk adg01 adg online
c1t1d1s2 auto:cdsdisk adg02 adg online
vxdg destroy adg
vxdisk -o alldgs list
DEVICE TYPE DISK GROUP STATUS
[…]
c1t1d0s2 auto:cdsdisk - - online
c1t1d1s2 auto:cdsdisk - - online
[…]

Obviously, the disk group has gone, at least for the vxdisk list tool. Let's have a closer
look to one of the disks formerly belonging to the destroyed disk group.

vxdisk -s list c1t1d0
[…]
diskid: 1223448582.74.haensel
dgname:
dgid: 1223448150.61.haensel
hostid:
info: format=cdsdisk,privoffset=256,pubslice=2,privslice=2

That looks more encouraging than we expected. The disk group name indeed was
erased from the disk configuration stored in the private region together with the disk group
ownership (field hostid), but the disk group ID providing a unique identification in case of
disk group name collisions is still available. In order to determine the amount of disk group
configuration data still present, we analyze the content of the private region (converted
into a well arranged output format).

/usr/lib/vxvm/diag.d/vxprivutil dumpconfig /dev/rdsk/c1t1d0s2 | vxprint -rtD -
v vol - DISABLED ACTIVE 2097152 SELECT - fsgen
pl vol-01 vol DISABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 vol-01 adg01 0 2097152 0 - DIS
pl vol-02 vol DISABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 vol-02 adg02 0 2097152 0 - DIS

A full comparison of the unconverted output with the last disk group configuration
stored by vxprint -m would reveal that none of these attributes has gone. Only those two
attributes of the disk configuration mentioned above are lost: the disk group name and
the disk group ownership. Well, that can easily be recreated by importing the disk group
using the disk group ID. You do not need to specify the disk group name, for it is automati-

400

Troubleshooting

cally taken from the disk group configuration.

vxdg import 1223448150.61.haensel
vxdisk -g adg list
DEVICE TYPE DISK GROUP STATUS
c1t1d0s2 auto:cdsdisk adg01 adg online
c1t1d1s2 auto:cdsdisk adg02 adg online

To sum up: Identify at least one disk formerly belonging to the destroyed disk group
(the disk may not provide an active configuration copy of the disk group). Get the disk
group ID from the disk configuration and import the disk group by its ID. That's all!

Did you shiver when reading about the task of disk identification in the previous para-
graph? Indeed, this could be extremely complicated if you administer a large environment
with numerous disks and if you do not remember the device access of at least one disk.
Searching for other locations of stored disk group configuration files, we draw a blank.
The disk group configuration copy created by vxconfigbackupd under /etc/vx/cbr/bk
was removed as a result of the disk group destruction. Only vxrelocd and vxsparecheck
provide an automated configuration backup under /etc/vx/saveconfig.d, which survives
even disk group destruction. But very probably, you will not get a disk outage ready at
hand to get the necessary backup file created in order to manage an inadvertent disk group
destruction.

We provide a dirty procedure to map the disk group name to its disk group ID and to
identify a disk formerly belonging to the destroyed disk group — dirty, for it is undocu-
mented. A file named after the disk group in a subdirectory of /var, designed to store the
temporary utility attribute values to tutil0, tutil1, and tutil2, has kept information on
object names even of the destroyed disk group. The content is, however, somewhat coded,
but fortunately, Unix provides valuable tools to filter printable characters:

file /var/vxvm/tempdb/adg
/var/vxvm/tempdb/adg: data
strings -n 3 /var/vxvm/tempdb/adg | grep -v VBLK
VMDB
adg
1223448150.61.haensel
adg
adg01
adg02
adg01-01
adg02-01
vol
vol-01
vol-02

The line containing the disk group name is immediately followed by the specification of
the disk group ID. Our task, the mapping of the disk group name to its ID, was successful.

401

Restore of Lost VxVM Objects

As a procedure of last resort, you must analyze all available disks obviously not belong-
ing to an active disk group. Check for the existence and value of the disk group ID stored
in the disk configuration part of the private region and filter from the disk group configu-
ration part the name of the disk group. We provide a short ksh script displaying device
access name, disk group name, and disk group ID for all appropriate disks. The device access
name may be helpful in case of multiple instances of a disk group name (same name, but
different disk group IDs).

List all disks being no disk group member and print device access
vxdisk -qo alldgs list | awk '$4=="-" {print $1}' |
while read daname; do
 # Get disk group ID, if any
 DGID=$(vxdisk -s list $daname | awk '$1=="dgid:" && NF==2 {print $2}')
 # Next disk, if no disk group ID
 [[-z $DGID]] && continue
 # Print device access
 printf '%-12s ' $daname
 # Dump disk group configuration of disk's private region
 /usr/lib/vxvm/diag.d/vxprivutil dumpconfig /dev/vx/rdmp/$daname |
 # Filter name and disk group ID from disk group object
 vxprint -D - -GF '%{name:-12} %dgid'
done

An example output of two destroyed disk groups:

c1t1d0s2 adg 1223278682.30.haensel
c1t1d1s2 adg 1223278682.30.haensel
c1t1d2s2 adg 1223278682.30.haensel
c1t1d3s2 adg 1223278682.30.haensel
c1t1d4s2 bdg 1223278792.32.haensel
c1t1d5s2 bdg 1223278792.32.haensel

11.5.6	 Serial Split Brain of a Disk Group

In general, it is a good idea to mirror your volumes across two (or more) separated loca-
tions, for all volumes go on to provide data access in case of a data center outage. It is also
a good idea to improve the availability of your applications by putting them under control
of a clustering software (a "campus cluster").

402

Troubleshooting

Array 2Array 1 Mirrored Volume

Host 1 Host 2

Cluster Heartbeat

A Mirrored Volume in a Campus ClusterFigure 11-3:

Nevertheless, this architecture includes a new problem in case of a network partition:
Each cluster host believes being the only surviving cluster node, thus starting all those
applications that were (and still are) running on the other node. We enter the world of
the dreaded cluster split brain. Loss of application data consistency is now a matter of
seconds.

However, our current topic is not application data consistency. As long as no disk
group configuration changes are performed, the disk group remains consistent across all
nodes. But what happens if both nodes modify the disk group? Then, no modified version
can be considered the current one by VxVM, administrator intervention is required. The
VxVM documentation calls this scenario a "Serial Split Brain" (SSB). Our example below
will simulate it by a sequential removal of the private region content from both disks of a
disk group.

1. The disk group configuration contains a simple volume mirrored across both disks
of the disk group.

vxprint -rtg adg
[…]

403

Restore of Lost VxVM Objects

dm adg01 c4t1d0s2 auto 2048 35365968 -
dm adg02 c4t2d0s2 auto 2048 35365968 -

v vol - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol-01 vol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 vol-01 adg01 0 2097152 0 c4t1d0 ENA
pl vol-02 vol ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 vol-02 adg02 0 2097152 0 c4t2d0 ENA

2.	 We store the private region content of the first disk and clear it afterwards. In
order to inform the kernel on the damaged disk state, we deport and forcibly re-import the
disk group. Finally, we modify the disk group configuration by adding a new volume.

dd if=/dev/rdsk/c4t1d0s2 of=/var/tmp/c4t1d0s2 bs=128k iseek=1 count=8
dd if=/dev/zero of=/dev/rdsk/c4t1d0s2 bs=128k oseek=1 count=8
vxdg deport adg
vxdg -f import adg
VxVM vxdg WARNING V-5-1-560 Disk adg01: Not found, last known location: c4t1d0s2
vxassist -g adg make newvol 1g

3.	 The following commands simulate the view on the disk group from another clus-
ter node: The disk group is deported, its previous configuration restored on the first disk,
while the second disk's private region is temporarily overwritten. A forced re-import indeed
shows the old configuration (unlike a real cluster scenario, the volume is DISABLED due to
the re-import). Once again, we modify the disk group by adding a volume.

vxdg deport adg
dd if=/var/tmp/c4t1d0s2 of=/dev/rdsk/c4t1d0s2 bs=128k oseek=1
dd if=/dev/rdsk/c4t2d0s2 of=/var/tmp/c4t2d0s2 bs=128k iseek=1 count=8
dd if=/dev/zero of=/dev/rdsk/c4t2d0s2 bs=128k oseek=1 count=8
vxdg -f import adg
VxVM vxdg WARNING V-5-1-560 Disk adg02: Not found, last known location: c4t2d0s2
vxprint -rtg adg
[…]
dm adg01 c4t1d0s2 auto 2048 35365968 -
dm adg02 - - - - NODEVICE

v vol - DISABLED ACTIVE 2097152 SELECT - fsgen
pl vol-01 vol DISABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 vol-01 adg01 0 2097152 0 c4t1d0 ENA
pl vol-02 vol DISABLED NODEVICE 2097152 CONCAT - RW
sd adg02-01 vol-02 adg02 0 2097152 0 - NDEV
vxassist -g adg make newvol 1g

4.	 Any clean-up procedure should start by stopping the application and deporting
the disk group in order to discard any locally stored data and configurations. Regarding
the disk group configuration, our simulation needs to recreate the private region content

404

Troubleshooting

on the second disk. Currently, no configuration copy may be interpreted as a newer version
compared to the other one. VxVM should not and indeed will not decide in favor of one
copy, when detecting the "Serial Split Brain" by trying to import the disk group.

vxdg deport adg
dd if=/var/tmp/c4t2d0s2 of=/dev/rdsk/c4t2d0s2 bs=128k oseek=1
vxdg import adg
VxVM vxdg ERROR V-5-1-587 Disk group adg: import failed: Serial Split Brain
detected. Run vxsplitlines

5.	 We observe the recommendation of the last command output. vxsplitlines
informs us about different configuration copies, where they are stored, how to access them
in order to decide for one copy (vxprivutil dumpconfig), and how to restore the disk group
based on our copy selection (vxdg -o selectcp=1223115776.23.sols import). The copy
selection is based on the disk ID assigned by VxVM during disk initialization.

vxsplitlines -g adg
 VxVM vxsplitlines NOTICE V-5-2-2708 There are 2 pools.
The Following are the disks in each pool. Each disk in the same pool
has config copies that are similar.
 VxVM vxsplitlines INFO V-5-2-2707 Pool 0.
c4t2d0s2 adg02
To see the configuration copy from this disk issue
/etc/vx/diag.d/vxprivutil dumpconfig /dev/vx/dmp/c4t2d0s2
To import the diskgroup with config copy from this
disk use the following command
/usr/sbin/vxdg -o selectcp=1223115776.23.sols import adg
The following are the disks whose ssb ids don't match in this config
copy
adg01

 VxVM vxsplitlines INFO V-5-2-2707 Pool 1.
c4t1d0s2 adg01
To see the configuration copy from this disk issue
/etc/vx/diag.d/vxprivutil dumpconfig /dev/vx/dmp/c4t1d0s2
To import the diskgroup with config copy from this
disk use the following command
/usr/sbin/vxdg -o selectcp=1223014683.15.sols import adg
The following are the disks whose ssb ids don't match in this config
copy
adg02

6.	 We analyze the content of the private regions on the disks (using the DMP driv-
ers). The default output format of vxprivutil dumpconfig is similar to the output gener-
ated by vxprint -m (except for comments on device blocks). Mostly, we do not need to
check so many details of the disk group. Therefore, at least for demonstration purposes on
commands working neatly together, we pipe the output into a reformatting vxprint com-

405

Restore of Lost VxVM Objects

mand. Indeed, the subdisk location of newvol differs, as emphasized in the output.

/etc/vx/diag.d/vxprivutil dumpconfig /dev/vx/dmp/c4t1d0s2 | vxprint -rtD -
Disk group: adg
[…]
v vol - DISABLED ACTIVE 2097152 SELECT - fsgen
pl vol-01 vol DISABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 vol-01 adg01 0 2097152 0 - DIS
pl vol-02 vol DISABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 vol-02 adg02 0 2097152 0 - DIS

v newvol - DISABLED ACTIVE 2097152 SELECT - fsgen
pl newvol-01 newvol DISABLED ACTIVE 2097152 CONCAT - RW
sd adg01-02 newvol-01 adg01 2097152 2097152 0 - DIS
/etc/vx/diag.d/vxprivutil dumpconfig /dev/vx/dmp/c4t2d0s2 | vxprint -rtD -
Disk group: adg
[…]
v vol - DISABLED ACTIVE 2097152 SELECT - fsgen
pl vol-01 vol DISABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 vol-01 adg01 0 2097152 0 - DIS
pl vol-02 vol DISABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 vol-02 adg02 0 2097152 0 - DIS

v newvol - DISABLED ACTIVE 2097152 SELECT - fsgen
pl newvol-01 newvol DISABLED ACTIVE 2097152 CONCAT - RW
sd adg02-02 newvol-01 adg02 2097152 2097152 0 - DIS

7.	 Just to make sure, that the command output of vxsplitlines identified the
disks properly, we compare it to the disk IDs. Then, we import the disk group based on our
selected disk group configuration copy (newvol's subdisk on disk adg01).

vxdisk -s list c4t1d0
[…]
diskid: 1223014683.15.sols
[…]
vxdisk -s list c4t2d0
[…]
diskid: 1223115776.23.sols
[…]
vxdg -o selectcp=1223014683.15.sols import adg

8.	 Being somewhat distrustful given our experience with software products for many
years, we check for the result and perform a detailed comparison of the physical contents
of the private region copies. Hooray, they are indeed identical regarding the disk group
configuration!

vxprint -rtg adg

406

Troubleshooting

[…]
dm adg01 c4t1d0s2 auto 2048 35365968 -
dm adg02 c4t2d0s2 auto 2048 35365968 -

v vol - DISABLED ACTIVE 2097152 SELECT - fsgen
pl vol-01 vol DISABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 vol-01 adg01 0 2097152 0 c4t1d0 ENA
pl vol-02 vol DISABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 vol-02 adg02 0 2097152 0 c4t2d0 ENA

v vola - DISABLED ACTIVE 2097152 SELECT - fsgen
pl vola-01 vola DISABLED ACTIVE 2097152 CONCAT - RW
sd adg01-02 vola-01 adg01 2097152 2097152 0 c4t1d0 ENA
/etc/vx/diag.d/vxprivutil dumpconfig /dev/vx/dmp/c4t1d0s2 > /tmp/c4t1
/etc/vx/diag.d/vxprivutil dumpconfig /dev/vx/dmp/c4t2d0s2 > /tmp/c4t2
# diff /tmp/c4t[12]	 (no output, i.e. no difference)

Booting 11.6	 without VxVM
A heavily corrupted VxVM installation could lead to an unbootable system. At least two
steps within the boot process could fail.

1.	 Kernel initialization and configuration are based on the root device. The root
device is the Open Boot Prom device providing access to the physical partition that holds
the root file system. The root file system may not be a unique device, your system naturally
provides in most cases two or more, because mostly you have mirrored your OS devices.
But even one instance of the root file system may be accessed by different drivers.

By the Open Boot Prom disk driver:

/ssm@0,0/pci@18,700000/pci@1/scsi@2/disk@2,0:a

As a pseudo device, by the VxVM kernel module responsible for the conversion of
application I/O requests into disk I/Os:

/pseudo/vxio@0:0

Without a rootdev entry in the /etc/system file, the boot device (such as
/ssm@0,0/pci@18,700000/pci@1/scsi@2/disk@2,0:a) automatically serves as root device
(by default, /etc/system under Solaris only contains comments). For the need to start
VxVM step by step, already the root device must be redirected to the VxVM kernel module
vxio. Therefore, a working boot process based on VxVM needs two active lines in the file
/etc/system:

rootdev:/pseudo/vxio@0:0
set vxio:vol_rootdev_is_volume=1

The latter line sets a memory flag indicating to create a virtual volume on the root

407

Booting without VxVM

device (vol_rootdev_is_volume is a symbolic memory address name). If you like kernel
panics in an early stage of the boot process, just feel free to corrupt any of these two lines.
But if both lines are missing, the boot process chooses the boot device as the root device,
thus building and configuring the kernel based on the standard disk driver.

2.	 Even if the file /etc/system does not contain the required entries for a VxVM
encapsulated OS disk, so that a partition based boot process is initiated, we must deal
with another barrier: The file /etc/vfstab still contains volume drivers. Quite early in the
single user mode/milestone, the required OS file systems /, /usr, and /var are mounted or
remounted in read-write mode based on the entries in /etc/vfstab. But the volume drivers
specified in this file will fail in case of a corrupted VxVM installation. Therefore, we need a
file version containing partition drivers.

In order to be well prepared for the recovery of a completely corrupted VxVM instal-
lation, any bootable disk should contain a partition bootable and a volume bootable
version of /etc/system and /etc/vfstab in addition to the active files. Quite simple for
/etc/system:

cp /etc/system /etc/system.vol
cp /etc/system /etc/system.part
# vi /etc/system.part	 (commented out by asterisk followed by space or completely erased)
[…]
* rootdev:/pseudo/vxio@0:0
* set vxio:vol_rootdev_is_volume=1
[…]

Creating a partition based /etc/vfstab for each bootable disk is a lot more compli-
cated. We need a mapping of the mount points to the numbers of the partitions covering
the subdisks of our OS volumes on our disks. Actually, we will settle for the volume names,
assuming that they correspond to the default names (rootvol mounted on /, swapvol for
the swap device, <volume> mounted on */<volume>). An approach step by step! The subdisk
offsets are calculated against the beginning of the public region (do not be alarmed by the
ghost subdisk osdg01-B0, we will take it in mind):

vxprint -g bootdg -sF '%name %dm_offset'
osdg01-B0 78083039
osdg01-01 0
osdg01-02 4198319
[…]

On the other side, the partition offsets are calculated against the beginning of the
disk.

prtvtoc -h /dev/rdsk/c0t0d0s2
 0 2 00 4198320 12586800 16785119
 1 3 01 0 4198320 4198319
 2 5 00 0 78156480 78156479

408

Troubleshooting

[…]

Therefore, the subdisk offsets plus the offset of the public region on the disk will result
in the partition offsets. Where do we get the public region offset from?

vxdisk list c0t0d0s2 | nawk '$1=="public:"'
public: slice=3 offset=1 len=78083040 disk_offset=0

In the output above, disk_offset specifies the offset of the public region as parti-
tion relative to the disk beginning, while offset denotes the offset of the public region as
subdisk container relative to the beginning of the public region as partition. So, we must
add offset and disk_offset to the subdisk offsets in order to get the subdisk offsets rela-
tive to the disk beginning which are, of course, identical to the partition offsets. We erase
the key words together with their equal sign from the output above and add the resulting
third to the fifth word to get the public region offset as subdisk container to the begin-
ning of the disk:

vxdisk list c0t0d0s2 |
 nawk '$1=="public:" {gsub(/[^ =]+=/,""); print $3+$5}'
1

Just one exception: If a partition starts at sector 0, it contains the VTOC at the begin-
ning. To protect the VTOC, the public region starting at sector 0 as partition gets an offset
of one sector as subdisk container (see the Encapsulation chapter, page 330). Our calcula-
tion above would produce a negative value (-1) for the corresponding subdisk. In that case,
we modify the value to 0 and fix the miscalculation due to the ghost subdisk. Here is our
script with some comments, but without error checking:

vi map_vol_part
#!/bin/ksh
c#t#d#s2 syntax is required
Disk=$1

Get disk offset of public region as subdisk container
PubRegOffset=$(vxdisk list $Disk |
nawk '$1=="public:"{gsub(/[^ =]+=/,""); print $3+$5}')

prtvtoc -h /dev/rdsk/$Disk |
Skip backup, private and public region partition
nawk '$2!=5 && $2!=14 && $2!=15 {print $1,$4}' |
while read Slice DiskOffset; do
 ((SubdiskOffset=DiskOffset-PubRegOffset))
 # Handle VTOC protection by ghost subdisk
 ((SubdiskOffset==-1)) && ((SubdiskOffset=0))
 # Get plexes to the corresponding subdisks on the disk
 # and print associated volume name
 Volume=$(vxprint -g bootdg -pF %assoc -e \

409

Booting without VxVM

 "pl_sd.sd_dm_offset=$SubdiskOffset && pl_sd.sd_da_name=\"$Disk\"")
 printf '%-12s %s\n' $Volume $Slice
done
chmod 744 map_vol_part
./map_vol_part c0t0d0s2
rootvol 0
swapvol 1
var 5
opt 6
./map_vol_part c0t2d0s2
rootvol 0
swapvol 1
opt 5
var 6

Finally, we got the data required to create vfstabs for each bootable disk. Look at
the example based on Solaris 9 (Solaris 10 adds three more lines for /devices, ctfs, and
objfs):

vi /etc/vfstab.c0t0d0s2
#device device mount FS fsck mount mount
#to mount to fsck point type pass at boot options
fd - /dev/fd fd - no -
/proc - /proc proc - no -
swap - /tmp tmpfs - yes -
/dev/dsk/c0t0d0s0 /dev/rdsk/c0t0d0s0 / ufs 1 no logging
/dev/dsk/c0t0d0s1 - - swap - no -
/dev/dsk/c0t0d0s5 /dev/rdsk/c0t0d0s5 /var ufs 1 no logging
/dev/dsk/c0t0d0s6 /dev/rdsk/c0t0d0s6 /opt ufs 1 yes logging

Be sure to create vfstabs for ALL your bootable disks in order to be prepared for an
unexpected system-wide VxVM failure. Did you ever use the vi editor at an early stage of
the single user mode/milestone without a /tmp device, thus only with single line editing
capabilities? Well, then you will appreciate our hints:

cp /etc/vfstab /etc/vfstab.vol
vi /etc/vfstab.c0t0d0s2
[…]
vi /etc/vfstab.c0t2d0s2
[…]

Since we are now prepared for the worst (a Solaris system without working VxVM),
let's test the procedure to boot for once based on partitions. Our VxVM disaster simulation
is created by renaming the basic kernel module vxio.

mv /kernel/drv/sparcv9/vxio /kernel/drv/sparcv9/vxio.renamed

410

Troubleshooting

A regular reboot will fail due to the wrong files /etc/system and /etc/vfstab, as
explained above. We could easily copy the proper files before rebooting, but this would not
fit to an unexpected VxVM disaster. Therefore, without any system reconfiguration, we shut
down our system to the Open Boot Prom.

# init 0		 (or halt)

The Open Boot Prom provides a mechanism to boot from alternate devices and kernel
configurations. That's exactly what we need: a kernel configuration based on a different
/etc/system (still not part of the OBP device tree, therefore without leading slash below).
Other requested parameter defaults simply require confirmation. Further on, we just enter
the single user mode/milestone, skipping even the execution of its run-level scripts, for our
basic VxVM kernel module is corrupted.

ok boot -ab
Boot device: /pci@1f,0/ide@d/disk@0,0:a File and args: -ab
Enter filename [kernel/sparcv9/unix]: enter
Enter default directory for modules [/platform/SUNW,Sun-Blade-100/kernel /plat-
form/sun4u/kernel /kernel /usr/kernel]: enter
Name of system file [etc/system]: etc/system.part
SunOS Release 5.10 Version Generic_118833-36 64-bit
Copyright 1983-2006 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.
root file system type [ufs]: enter
Enter physical name of root device
[/pci@1f,0/ide@d/disk@0,0:a]: enter
[…]
Root password for system maintenance (control-d to bypass): password

In order to activate the partition based files /etc/system and /etc/vfstab, our root
file system must be remounted to achieve read-write access. A proper key table alleviates
this task. Since it is of no use to execute the VxVM run-level scripts during the following
reboot, we create a touch file designed to skip them.

loadkeys
awk '$3=="/"' /etc/vfstab.c0t0d0s2
/dev/dsk/c0t0d0s0 /dev/rdsk/c0t0d0s0 / ufs 1 no logging
mount -F ufs -o remount /dev/dsk/c0t0d0s0 /
cp /etc/system.part /etc/system
cp /etc/vfstab.c0t0d0s2 /etc/vfstab
touch /etc/vx/reconfig.d/state.d/install-db
reboot

Our system now boots without the need for interaction based on partitions of the disk
c0t0d0s2 (our example). It is deadly important to keep in mind that our copy and touch
actions, the succeeding boot process, and our VxVM repair modified the OS file systems
only on c0t0d0s2, without the knowledge of VxVM. Therefore, the OS mirrors are now out

411

Booting without VxVM

of sync. But the last known states of the corresponding plexes stored within the private
region are ACTIVE, signifying that the mirrors are coherent. By all means, before performing
a volume based boot, we must tell VxVM that the plex mirrors on the other OS disk(s) are
stale (see the repairing commands below). Otherwise, the default read policy SELECTED,
which means ROUND ROBIN given our simple plex layouts, leads to inconsistent and unpre-
dictable results, to a system unable to work properly.

cp /etc/system.vol /etc/system
cp /etc/vfstab.vol /etc/vfstab
rm /etc/vx/reconfig.d/state.d/install-db
mv /kernel/drv/sparcv9/vxio.renamed /kernel/drv/sparcv9/vxio
vxconfigd -m boot
PlexList=$(vxprint -g bootdg -pne 'pl_sd.sd_daname!="c0t0d0s2"')
vxmend -g bootdg off $PlexList
vxmend -g bootdg on $PlexList
vxprint -rtg bootdg
[…]
v rootvol - ENABLED ACTIVE 12586800 ROUND - root
pl rootvol-01 rootvol ENABLED ACTIVE 12586800 CONCAT - RW
sd osdg01-02 rootvol-01 osdg01 4198319 12586800 0 c0t0d0 ENA
pl rootvol-02 rootvol DISABLED STALE 12586800 CONCAT - RW
sd osdg02-03 rootvol-02 osdg02 29367840 12586800 0 c0t2d0 ENA
[…]
reboot

The reboot process will be based upon volumes and start plex synchronization in the
background. Fortunately and finally!

412

Troubleshooting

Technical Deep Dive

More than Two OS Mirrors: 11.7	 Emergency
Disk
Sometimes it may be desirable to supply OS or application volumes with a third mirror,
e.g. to achieve even higher redundancy or an increased read performance due to the usual
round robin read policy. But to mention the most important reason for a third plex (in a
special state) within OS or application volumes, mirroring data does not protect against
some awful data destroying errors. Some examples: You issue the dreaded rm -r * com-
mand within the wrong directory, the database did not survive a test run with imported
data, an OS “patch” made our system unbootable, and so on.

We focus on the procedure to protect OS volumes by adding a third plex in order to
form an emergency boot disk. The emergency disk must hold a bootable OS image which
is not updated by every I/O, but only in intervals decided by the administrator (manually or
automated). How can we create a third OS mirror? The answer seems quite simple: by the
same way we did it for the second OS mirror. Indeed? Let’s try it!

1.	 We initialize a new disk and add it to the boot disk group:

vxdisksetup -i c0t4d0 format=sliced privlen=1m
vxdg -g osdg adddisk osdg03=c0t4d0
vxdisk -g osdg list
DEVICE TYPE DISK GROUP STATUS
c0t2d0s2 auto:sliced osdg01 osdg online
c0t3d0s2 auto:sliced osdg02 osdg online
c0t4d0s2 auto:sliced osdg03 osdg online

2.	 We try to add mirrors by the usual vxmirror command:

vxmirror -g osdg osdg01 osdg03
VxVM vxmirror ERROR V-5-2-3604 No non-redundant volumes to mirror

Oops! The main purpose of vxmirror was (and still is) to mirror non-redundant vol-
umes. Mirroring OS volumes is just a special subtask. But all our volumes are still mirrored.
We need another procedure.

3.	 We create the third mirrors using the vxassist command, thus avoiding the mir-
ror check mechanisms of the vxmirror script. First, we need a list of OS volumes, but only
of top-level volumes, not of subvolumes, DCL volumes, or cache volumes. Unfortunately,
the development of attributes to the -e option of vxprint often lags behind the implemen-
tation of new object attributes: The volume attribute layered, introduced by VxVM 3.0 long

413

More than Two OS Mirrors: Emergency Disk

ago, was not activated for -e until VxVM 5.0 in the usual manner (v_layered). The attribute
iscachevol, belonging to space optimized snapshots starting with VxVM 4.0, is still not
implemented for -e. Therefore, make sure by an advanced volume analysis you only mirror
the correct volumes. The first of the following commands, being compatible to VxVM 4.x,
just skips DCL volumes (you won’t expect subvolumes and snapshot cache volumes on OS
disks, will you?), the second one subvolumes as well.

vxprint -g osdg -vne 'v_isdcolog=off'
opt
rootvol
swapvol
var
vxprint –g osdg –vne 'v_isdcolog=off && v_layered=off'
opt
rootvol
swapvol
var

4.	 Taking this output or a partially reduced list of volumes, we write a simple Shell
loop to add another mirror to the volumes:

for vol in $(vxprint -g osdg -vne 'v_isdcolog=off && v_layered=off'); do
 vxassist -g osdg mirror $vol osdg03; done

Mirroring rootvol carrying usage type root automatically creates a partition number
0 over the mirror subdisk and enters a new OBP alias definition for the new disk:

prtvtoc -h /dev/rdsk/c0t4d0s2
 0 2 00 2110976 16812416 18923391
 2 5 00 0 35368272 35368271
 3 15 01 0 9424 9423
 4 14 01 9424 35358848 35368271
eeprom nvramrc
devalias vx-osdg01 /ssm@0,0/pci@18,700000/pci@1/scsi@2/disk@2,0:a
devalias vx-osdg02 /ssm@0,0/pci@18,700000/pci@1/scsi@2/disk@3,0:a
devalias vx-osdg03 /ssm@0,0/pci@18,700000/pci@1/scsi@2/disk@4,0:a

5.	 We still need partitions over the remaining OS volumes and, in case of a damaged
boot block within the rootvol, the installboot command to recreate it. These tasks are
best performed by the vxbootsetup script. A hint for deep-sea divers: VxVM also provides
some interesting low-level commands executed by vxbootsetup: vxpartadd, vxedvtoc,
vxmksdpart, and vxeeprom.

vxbootsetup -g osdg osdg03
prtvtoc -h /dev/rdsk/c0t4d0s2
 0 2 00 2110976 16812416 18923391
 1 3 01 9424 2101552 2110975

414

Troubleshooting

 2 5 00 0 35368272 35368271
 3 15 01 0 9424 9423
 4 14 01 9424 35358848 35368271
 5 0 00 25218624 8392072 33610695
 6 7 00 18923392 6295232 25218623

6.	 The OBP attribute boot-device should be extended by an entry for the new OS
disk:

eeprom boot-device
boot-device=vx-osdg01 vx-osdg02 disk net
eeprom boot-device='vx-osdg01 vx-osdg02 vx-osdg03 disk net'
eeprom boot-device
boot-device=vx-osdg01 vx-osdg02 vx-osdg03 disk net

Note: Whenever issuing a vxbootsetup command on an OS disk, make sure beforehand,
rootvol already furnished with partition 0 by the vxassist mirror command still keeps
this partition association, and partition 1 designed to become the swap partition is still
unused. Otherwise the vxbootsetup command will fail.

7.	 Our preparatory tasks created a third mirror still as a current and active part of the
OS volumes. Inadvertent commands would remove, destroy or invalidate data on all three
mirrors. We need a frozen copy of the current data, but nevertheless capable to boot from
and to recover the volume to the frozen data set. We already discussed thoroughly several
techniques provided by VxVM to establish a snapshot of a volume in chapter 9. The current
chapter demonstrates another way to handle a bootable snapshot based on a procedure
specific to OS volumes: They provide two independent drivers accessing the same data set,
the volume and the partition driver.

In order to minimize plex operations, our procedure simply offlines the plexes holding
the frozen data set.

vxprint -g osdg -pne 'pl_sd.sd_dmname="osdg03"'
opt-03
rootvol-03
swapvol-03
var-03
vxmend -g osdg off $(vxprint -g osdg -pne 'pl_sd.sd_dmname="osdg03"')
vxprint -g osdg -pthe 'pl_sd.sd_dmname="osdg03"'
PL NAME VOLUME KSTATE STATE LENGTH LAYOUT NCOL/WID MODE
SD NAME PLEX DISK DISKOFFS LENGTH [COL/]OFF DEVICE MODE
SV NAME PLEX VOLNAME NVOLLAYR LENGTH [COL/]OFF AM/NM MODE
SC NAME PLEX CACHE DISKOFFS LENGTH [COL/]OFF DEVICE MODE

pl opt-03 opt DISABLED OFFLINE 8392072 CONCAT - RW
sd osdg03-04 opt-03 osdg03 25209200 8392072 0 c0t4d0 ENA

pl rootvol-03 rootvol DISABLED OFFLINE 16812416 CONCAT - RW

415

More than Two OS Mirrors: Emergency Disk

sd osdg03-02 rootvol-03 osdg03 2101552 16812416 0 c0t4d0 ENA

pl swapvol-03 swapvol DISABLED OFFLINE 2101552 CONCAT - RW
sd osdg03-01 swapvol-03 osdg03 0 2101552 0 c0t4d0 ENA

pl var-03 var DISABLED OFFLINE 6295232 CONCAT - RW
sd osdg03-03 var-03 osdg03 18913968 6295232 0 c0t4d0 ENA

8.	 But how is it possible to boot from the emergency disk which provides the frozen
copies of the OS volumes? We already implemented some of the prerequisites by invok-
ing vxbootsetup (step 5 above): We put partitions over the subdisks, we re-installed as
a fallback the boot block on the root partition, and we created an OBP alias. Obviously,
it is useless to perform a VxVM based boot, for the plexes determining the frozen data
set are offlined. But we still have the partition drivers to the emergency disk, obstinately
and unteachable ignoring any plex states. Booting from the emergency disk exclusively
by the partition drivers require a modified kernel configuration file /etc/system to skip
root volume mapping on the root partition during kernel initialization and, what is more,
/etc/vfstab containing partition, not volume drivers.

Our first step will map the subdisks to their corresponding partition numbers in order
to create the correct /etc/vfstab. The basics and the procedures were already explained
in the "Full Battleship" part beginning on page 352, so we simply refer to them. Our file
/etc/vfstab for the emergency disk will contain the following entries instead of the vol-
ume drivers:

/dev/dsk/c0t4d0s0 /dev/rdsk/c0t4d0s0 / ufs 1 no logging
/dev/dsk/c0t4d0s1 - - swap - no -
/dev/dsk/c0t4d0s5 /dev/rdsk/c0t4d0s5 /opt ufs 1 yes logging
/dev/dsk/c0t4d0s6 /dev/rdsk/c0t4d0s6 /var ufs 1 no logging

9.	 We offlined the emergency plexes while the OS was running, naturally. A file sys-
tem check is required before mounting them. Then, we are able to modify /etc/system and
/etc/vfstab only on the emergency partition. As described in the section about booting
without VxVM beginning on page 406, we copy the versions of these files which allow a
partition boot to the active location.

fsck -y /dev/rdsk/c0t4d0s0
** /dev/rdsk/c0t4d0s0
** Last Mounted on /
** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3a - Check Connectivity
** Phase 3b - Verify Shadows/ACLs
** Phase 4 - Check Reference Counts
** Phase 5 - Check Cylinder Groups
211337 files, 5712887 used, 2541378 free (92722 frags, 306082 blocks, 1.1% frag-
mentation)
fsck -y /dev/rdsk/c0t4d0s5

416

Troubleshooting

** /dev/rdsk/c0t4d0s5
** Last Mounted on /opt
[…]
fsck -y /dev/rdsk/c0t4d0s6
** /dev/rdsk/c0t4d0s6
** Last Mounted on /var
[…]
mount /dev/dsk/c0t4d0s0 /mnt
cd /mnt/etc
cp system.part system
cp vfstab.c0t4d0s2 vfstab
cd /
umount /mnt

10.	 Assume the current OS does not work anymore or has lost critical files. Therefore,
we must boot from the emergency disk based on partitions. Nevertheless, the system
startup procedure will start VxVM daemons as well. Quite correct, for we want to synchro-
nize the damaged parts of the OS volumes from the offlined emergency plexes! Since our
system afterwards should run on volumes, not on partitions, we reboot just to the single
user mode/milestone based on partitions to swap the role of the data sets. The current
section uses /sbin/sh syntax in order to conform to boot process recommendations.

reboot vx-osdg03 -s
[…]
Rebooting with command: boot vx-osdg03 -s
[…]
Booting to milestone "milestone/single-user:default".
[…]
VxVM sysboot INFO V-5-2-3409 starting in boot mode...
[…]
VxVM sysboot INFO V-5-2-3390 Starting restore daemon...
Requesting System Maintenance Mode
SINGLE USER MODE

Root password for system maintenance (control-d to bypass): password
df -k / /var
Filesystem kbytes used avail capacity Mounted on
/dev/dsk/c0t4d0s0 8262473 5729317 2450532 71% /
/dev/dsk/c0t4d0s6 3099238 1269603 1767651 42% /var
vxprint -rtg osdg rootvol
[…]
v rootvol - ENABLED ACTIVE 16812416 ROUND - root
pl rootvol-01 rootvol ENABLED ACTIVE 16812416 CONCAT - RW
sd osdg01-02 rootvol-01 osdg01 2101551 16812416 0 c0t2d0 ENA
pl rootvol-02 rootvol ENABLED ACTIVE 16812416 CONCAT - RW
sd osdg02-02 rootvol-02 osdg02 2101552 16812416 0 c0t3d0 ENA
pl rootvol-03 rootvol DISABLED OFFLINE 16812416 CONCAT - RW

417

More than Two OS Mirrors: Emergency Disk

sd osdg03-02 rootvol-03 osdg03 2101552 16812416 0 c0t4d0 ENA
vxvol -g osdg stopall
vxprint -rtg osdg rootvol
[…]
v rootvol - DISABLED CLEAN 16812416 ROUND - root
pl rootvol-01 rootvol DISABLED CLEAN 16812416 CONCAT - RW
sd osdg01-02 rootvol-01 osdg01 2101551 16812416 0 c0t2d0 ENA
pl rootvol-02 rootvol DISABLED CLEAN 16812416 CONCAT - RW
sd osdg02-02 rootvol-02 osdg02 2101552 16812416 0 c0t3d0 ENA
pl rootvol-03 rootvol DISABLED OFFLINE 16812416 CONCAT - RW
sd osdg03-02 rootvol-03 osdg03 2101552 16812416 0 c0t4d0 ENA
vxprint -g osdg -pne 'pl_sd.sd_dmname~/^osdg0[12]$/'
opt-01
opt-02
rootvol-01
rootvol-02
swapvol-01
swapvol-02
var-01
var-02
vxmend -g osdg -o force off `
 vxprint -g osdg -pne 'pl_sd.sd_dmname~/^osdg0[12]$/'`
vxmend -g osdg on `
 vxprint -g osdg -pne 'pl_sd.sd_dmname="osdg03"'`
vxprint -rtg osdg rootvol
[…]
v rootvol - DISABLED CLEAN 16812416 ROUND - root
pl rootvol-01 rootvol DISABLED OFFLINE 16812416 CONCAT - RW
sd osdg01-02 rootvol-01 osdg01 2101551 16812416 0 c0t2d0 ENA
pl rootvol-02 rootvol DISABLED OFFLINE 16812416 CONCAT - RW
sd osdg02-02 rootvol-02 osdg02 2101552 16812416 0 c0t3d0 ENA
pl rootvol-03 rootvol DISABLED STALE 16812416 CONCAT - RW
sd osdg03-02 rootvol-03 osdg03 2101552 16812416 0 c0t4d0 ENA
vxmend -g osdg fix clean `
 vxprint -g osdg -pne 'pl_sd.sd_dmname="osdg03"'`
vxprint -rtg osdg rootvol
[…]
v rootvol - DISABLED CLEAN 16812416 ROUND - root
pl rootvol-01 rootvol DISABLED OFFLINE 16812416 CONCAT - RW
sd osdg01-02 rootvol-01 osdg01 2101551 16812416 0 c0t2d0 ENA
pl rootvol-02 rootvol DISABLED OFFLINE 16812416 CONCAT - RW
sd osdg02-02 rootvol-02 osdg02 2101552 16812416 0 c0t3d0 ENA
pl rootvol-03 rootvol DISABLED CLEAN 16812416 CONCAT - RW
sd osdg03-02 rootvol-03 osdg03 2101552 16812416 0 c0t4d0 ENA
cd /etc
cp vfstab.vol vfstab
cp system.vol system

418

Troubleshooting

reboot vx-osdg03

11.	 The system boots once again from the emergency disk, but based on volumes
this time. Maybe you need to restore some files from the still not resynchronized damaged
boot disks (that's why we kept their OFFLINE state). Simply use the partition drivers to
access them. Then, you should synchronize the volumes to achieve redundancy. Counting
four volumes, we expect four synchronization threads, sequentially executed. Surprisingly,
vxtask list (without disk group specification) lists eight tasks. An extract of the disk
group configuration during synchronization (in our example to the opt volume) indeed
shows, that each stale plex is resynchronized by a particular thread — for whatever rea-
son.

fsck -y /dev/rdsk/c0t2d0s0
** /dev/rdsk/c0t2d0s0
** Last Mounted on /
[…]
mount /dev/dsk/c0t2d0s0 /mnt
cp /mnt/<path>/<file> /<path>
umount /mnt
vxmend -g osdg on `
 vxprint -g osdg -pne 'pl_sd.sd_dmname~/^osdg0[12]$/'`
vxprint -rtg osdg rootvol
v rootvol - ENABLED ACTIVE 16812416 ROUND - root
pl rootvol-01 rootvol DISABLED STALE 16812416 CONCAT - RW
sd osdg01-02 rootvol-01 osdg01 2101551 16812416 0 c0t2d0 ENA
pl rootvol-02 rootvol DISABLED STALE 16812416 CONCAT - RW
sd osdg02-02 rootvol-02 osdg02 2101552 16812416 0 c0t3d0 ENA
pl rootvol-03 rootvol ENABLED ACTIVE 16812416 CONCAT - RW
sd osdg03-02 rootvol-03 osdg03 2101552 16812416 0 c0t4d0 ENA
vxrecover -g osdg -b
vxtask list
TASKID PTID TYPE/STATE PCT PROGRESS
VxVM vxtask WARNING V-5-1-2497 Unable to get disk group record: Record not in
disk group
 161 PARENT/R 0.00% 8/0(1) VXRECOVER 539720.0
 162 162 ATCOPY/R 03.90% 0/8392072/327680 PLXATT 0.1052 0.1051 0.1
vxtask -g osdg list
TASKID PTID TYPE/STATE PCT PROGRESS
 162 162 ATCOPY/R 05.76% 0/8392072/483328 PLXATT opt opt-01 osdg
vxprint -rtg osdg opt
v opt - ENABLED ACTIVE 8392072 ROUND - fsgen
pl opt-01 opt ENABLED STALE 8392072 CONCAT - WO
sd osdg01-04 opt-01 osdg01 18913967 8392072 0 c0t2d0 ENA
pl opt-02 opt DISABLED STALE 8392072 CONCAT - RW
sd osdg02-03 opt-02 osdg02 18913968 8392072 0 c0t3d0 ENA
pl opt-03 opt ENABLED ACTIVE 8392072 CONCAT - RW
sd osdg03-04 opt-03 osdg03 25209200 8392072 0 c0t4d0 ENA

419

More than Two OS Mirrors: Emergency Disk

12.	 As the final step, the plexes containing subdisks on the emergency disk should be
offlined, file system checked, and prepared for the next case of emergency — hopefully not
too soon. The gap is closed.

vxmend -g osdg off `vxprint -g osdg -pne 'pl_sd.sd_dmname="osdg03"'`
fsck -y /dev/rdsk/c0t4d0s0
fsck -y /dev/rdsk/c0t4d0s5
fsck -y /dev/rdsk/c0t4d0s6
mount /dev/dsk/c0t4d0s0 /mnt
cd /mnt/etc
cp system.part system
cp vfstab.c0t4d0s2 vfstab
cd /
umount /mnt

You will surely agree, that we need to execute a lot of complicated commands. Why
not write Shell scripts to make life easier and even to automate recovery? We present
three scripts, the first called EmergencyDisk_Prepare to prepare the emergency disk (steps
11 and 12/7, 8 and 9), the second (EmergencyDisk_Restore) to boot the system from the
emergency disk based on volumes in order to recover them (step 10), and finally a run level
script (NOT_S99EmergencyDisk_Restore) to automate the latter task, typically disabled, but
temporarily enabled by the first script.

Script EmergencyDisk_Prepare

#!/sbin/sh
echo Recovering OS disks. Please wait ...
vxmend -g osdg on `vxprint -g osdg -pne 'pl_sd.sd_dmname~/^osdg0[12]$/'`
vxrecover -g osdg || exit 1
echo FS checking partitions of emergency disk c0t4d0. Please wait ...
vxmend -g osdg off `vxprint -g osdg -pne 'pl_sd.sd_dmname="osdg03"'`
fsck -y /dev/rdsk/c0t4d0s0
fsck -y /dev/rdsk/c0t4d0s5
fsck -y /dev/rdsk/c0t4d0s6
mount /dev/dsk/c0t4d0s0 /mnt
cd /mnt/etc
cp system.part system
cp vfstab.c0t4d0s2 vfstab
cp rcS.d/NOT_S99EmergencyDisk_Restore rcS.d/S99EmergencyDisk_Restore
cd /
umount /mnt
echo The disk c0t4d0 is ready for emergency use.
exit 0

Script EmergencyDisk_Restore

420

Troubleshooting

#!/sbin/sh
vxvol -g osdg stopall
vxmend -g osdg -o force off `
vxprint -g osdg -pne 'pl_sd.sd_dmname~/^osdg0[12]$/'`
vxmend -g osdg on `vxprint -g osdg -pne 'pl_sd.sd_dmname="osdg03"'`
vxmend -g osdg fix clean `vxprint -g osdg -pne 'pl_sd.sd_dmname="osdg03"'`
cd /etc
cp vfstab.vol vfstab
cp system.vol system
mv rcS.d/S99EmergencyDisk_Restore rcS.d/NOT_S99EmergencyDisk_Restore
reboot vx-osdg03

Script NOT_S99EmergencyDisk_Restore

#!/sbin/sh
echo Stopping all volumes of disk group osdg
vxvol -g osdg stopall || exit 1
echo Offlining all plexes of disks osdg01, osdg02 ...
vxmend -g osdg -o force off `
vxprint -g osdg -pne 'pl_sd.sd_dmname~/^osdg0[12]$/'` || exit 2
echo Onlining all plexes of emergency disk osdg03 ...
vxmend -g osdg on `vxprint -g osdg -pne 'pl_sd.sd_dmname="osdg03"'` || exit 2
vxmend -g osdg fix clean `vxprint -g osdg -pne 'pl_sd.sd_dmname="osdg03"'` ||
exit 2
echo Creating /etc/vfstab and /etc/system for encapsulated OS disks
cd /etc
cp vfstab.vol vfstab
cp system.vol system
mv rcS.d/S99EmergencyDisk_Restore rcS.d/NOT_S99EmergencyDisk_Restore
echo Rebooting using encapsulated disk osdg03
reboot vx-osdg03

11.8	 Hot Relocation Troubles

Plex Synchronization Skipped11.8.1	

In all software versions of VxVM we know, except for the unpatched version of VxVM 5.0,
vxrelocd shows a strange failure handling under specific conditions. Within a diskgroup
containing three disks we create three volumes: vol1 unmirrored, vol2 holding two, vol3
three data plexes. All volumes use a subdisk on the common disk adg01. We will make this
disk unavailable to VxVM in order to analyze the failure handling of vxrelocd.

vxassist -g adg make vol3 1g layout=mirror nmirror=3 init=active
vxassist -g adg make vol2 1g layout=mirror nmirror=2 init=active \

421

Hot Relocation Troubles

 alloc=adg01,adg02
vxassist -g adg make vol1 1g alloc=adg01
vxprint -rtg adg
[…]
dm adg01 c1t1d0s2 auto 2048 122171136 -
dm adg02 c1t1d1s2 auto 2048 122171136 -
dm adg03 c1t1d2s2 auto 2048 122171136 -

v vol1 - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol1-01 vol1 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-03 vol1-01 adg01 4194304 2097152 0 c1t1d0 ENA

v vol2 - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol2-01 vol2 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-02 vol2-01 adg01 2097152 2097152 0 c1t1d0 ENA
pl vol2-02 vol2 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-02 vol2-02 adg02 2097152 2097152 0 c1t1d1 ENA

v vol3 - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol3-01 vol3 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg01-01 vol3-01 adg01 0 2097152 0 c1t1d0 ENA
pl vol3-02 vol3 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 vol3-02 adg02 0 2097152 0 c1t1d1 ENA
pl vol3-03 vol3 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg03-01 vol3-03 adg03 0 2097152 0 c1t1d2 ENA
dd if=/dev/zero of=/dev/rdsk/c1t1d0s2 bs=128k oseek=1 count=1
vxconfigd -k

From a previous section of this chapter, we already know the default behavior of VxVM
and especially of vxrelocd: All plexes affected by failed subdisks on the failed disk enter
kernel state DISABLED and application state NODEVICE. As long as there are still other
healthy plexes within a volume, the volume keeps its state pair ENABLED/ACTIVE, thus pro-
viding continued access. After some seconds, vxrelocd searches for subdisk replacement.
A DISABLED volume (vol1 in our example) cannot relocate the failed subdisk, because it
has no valid plex anymore to synchronize from. It is therefore skipped by vxrelocd. An
ENABLED volume (vol2) will get a replacement subdisk (step 1) to become a synchronized
member of the volume (step 2). But what happens, if vxrelocd cannot find the required
space to relocate the failed subdisk (vol3, because we only have three disks within the disk
group)? Well, the answer is quite simple: No subdisk relocation is performed.

Unfortunately, vxrelocd does not behave like this. Look at the following result created
by vxrelocd in our example.

vxprint -rtg adg
[…]
dm adg01 - - - - NODEVICE
dm adg02 c1t1d1s2 auto 2048 122171136 -
dm adg03 c1t1d2s2 auto 2048 122171136 -

422

Troubleshooting

v vol1 - DISABLED ACTIVE 2097152 SELECT - fsgen
pl vol1-01 vol1 DISABLED NODEVICE 2097152 CONCAT - RW
sd adg01-03 vol1-01 adg01 4194304 2097152 0 - NDEV

v vol2 - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol2-01 vol2 DISABLED IOFAIL 2097152 CONCAT - RW
sd adg03-02 vol2-01 adg03 2097152 2097152 0 c1t1d2 ENA
pl vol2-02 vol2 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-02 vol2-02 adg02 2097152 2097152 0 c1t1d1 ENA

v vol3 - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol3-01 vol3 DISABLED NODEVICE 2097152 CONCAT - RW
sd adg01-01 vol3-01 adg01 0 2097152 0 - NDEV
pl vol3-02 vol3 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-01 vol3-02 adg02 0 2097152 0 c1t1d1 ENA
pl vol3-03 vol3 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg03-01 vol3-03 adg03 0 2097152 0 c1t1d2 ENA

vol1 is indeed DISABLED, vol3 could not find another disk for subdisk relocation, so
the affected plex remained in state DISABLED/NODEVICE. Although vol2, as expected, got
the subdisk relocated to the third disk (adg03), vxrelocd skipped the plex synchronization,
leaving the plex in the DISABLED/IOFAIL state (DISABLED/RECOVER in case of a complete
disk failure).

The mails sent by vxrelocd give no further hints on the reason for the incomplete
subdisk relocation. Some excerpts:

Subject: Volume Manager failures on host haensel
[…]
Failures have been detected by the VERITAS Volume Manager:

failed disks:
 adg01

failed plexes:
vol1-01
vol2-01
vol3-01

The Volume Manager will attempt to find spare disks, relocate failed
subdisks and then recover the data in the failed plexes.

Subject: Volume Manager failures on host haensel
[…]
Attempting to relocate subdisk adg01-02 from plex vol2-01.
Dev_offset - length 2097152 dm_name adg01 da_name c1t1d0s2.
The available plex vol2-02 will be used recover the data.

423

Hot Relocation Troubles

Subject: Volume Manager failures on host haensel
[…]
Attempting to relocate subdisk adg01-01 from plex vol3-01.
Dev_offset - length 2097152 dm_name adg01 da_name c1t1d0s2.
The available plex vol3-02 vol3-03 will be used recover the data.

[…]
Subject: Attempting VxVM relocation on host haensel
[…]
Relocation was not successful for subdisks on disk adg01 in
volume vol2 in disk group adg. No replacement was made and the
disk is still unusable.
[…]
Subject: Attempting VxVM relocation on host haensel
[…]
Volume vol2 Subdisk adg01-02 relocated to adg03-02,
but not yet recovered.
[…]
Subject: Attempting VxVM relocation on host haensel
[…]
Relocation was not successful for subdisks on disk adg01 in
volume vol3 in disk group adg. No replacement was made and the
disk is still unusable.
[…]

Due to a misplaced break condition in a loop, the recovery synchronization of volume
vol2 is not started, for vol3 (!) could not find a subdisk replacement. In order to complete
the recovery procedure, just execute the appropriate recovery command manually:

vxrecover -g adg -b vol2
vxtask -g adg list
TASKID PTID TYPE/STATE PCT PROGRESS
 164 164 ATCOPY/R 32.23% 0/2097152/675840 PLXATT vol2 vol2-01 adg
vxprint -rtg adg vol2
[…]
v vol2 - ENABLED ACTIVE 2097152 SELECT - fsgen
pl vol2-01 vol2 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg03-02 vol2-01 adg03 2097152 2097152 0 c1t1d2 ENA
pl vol2-02 vol2 ENABLED ACTIVE 2097152 CONCAT - RW
sd adg02-02 vol2-02 adg02 2097152 2097152 0 c1t1d1 ENA

424

Troubleshooting

Unrelocation of Split Subdisks11.8.2	

Hot relocation may not always find appropriate disk space to execute a one-to-one subdisk
replacement. Will the hot relocation procedure fail, if a failed subdisk cannot be recreated
on one target disk? Or will the subdisk be split into smaller fragments spread over multiple
disks? Since this is a somewhat realistic scenario, we should examine VxVM's behavior.
Within a disk group containing four disks at approx. 17 GB in size, we create a mirrored
volume of 16 GB on the first two disks, while a mirrored dummy volume of 8 GB covers
the last two disks. So, if one disk of the regular volume fails, the subdisk on it cannot be
replaced by just one subdisk.

vxassist -g adg make vol 16g layout=mirror alloc=adg01,adg02 init=active
vxassist -g adg make dummy 8g layout=mirror alloc=adg03,adg04 init=active
vxprint -rtg adg
[…]
dm adg01 c4t1d0s2 auto 2048 35365968 -
dm adg02 c4t2d0s2 auto 2048 35365968 -
dm adg03 c4t3d0s2 auto 2048 35365968 -
dm adg04 c4t4d0s2 auto 2048 35365968 -

v dummy - ENABLED ACTIVE 16777216 SELECT - fsgen
pl dummy-01 dummy ENABLED ACTIVE 16777216 CONCAT - RW
sd adg03-01 dummy-01 adg03 0 16777216 0 c4t3d0 ENA
pl dummy-02 dummy ENABLED ACTIVE 16777216 CONCAT - RW
sd adg04-01 dummy-02 adg04 0 16777216 0 c4t4d0 ENA

v vol - ENABLED ACTIVE 33554432 SELECT - fsgen
pl vol-01 vol ENABLED ACTIVE 33554432 CONCAT - RW
sd adg01-01 vol-01 adg01 0 33554432 0 c4t1d0 ENA
pl vol-02 vol ENABLED ACTIVE 33554432 CONCAT - RW
sd adg02-01 vol-02 adg02 0 33554432 0 c4t2d0 ENA
vxdg -g adg free
DISK DEVICE TAG OFFSET LENGTH FLAGS
adg01 c4t1d0s2 c4t1d0 33554432 1811536 -
adg02 c4t2d0s2 c4t2d0 33554432 1811536 -
adg03 c4t3d0s2 c4t3d0 16777216 18588752 -
adg04 c4t4d0s2 c4t4d0 16777216 18588752 -

Disk adg01 is powered off and some I/O issued on the regular volume. Hot relocation
detects the need for subdisk relocation. We turned on Shell debugging within the vxrelocd
script to analyze its behavior:

+ vxassist -r -g adg move vol !adg01 adg02
+ vxassist -r -g adg move vol !adg01 adg03
+ vxassist -r -g adg move vol !adg01 adg04
+ vxassist -r -g adg move vol spare=yes !adg01

425

Hot Relocation Troubles

The script vxrelocd tried to find an appropriate disk as subdisk container by executing
vxassist move commands. The first command failed, because disk adg02 was already in use
by the other volume mirror. The next two commands failed, because disks adg03 and adg04
each could not provide the required free space. The fourth command succeeded, for only
disk adg01 was excluded from the storage allocation, thus enabling multiple target disks.
spare=yes assigned a higher priority to spare disks (which we did not define), the option
-r included spare disks in the space calculation for the subdisk relocation.

Indeed, the failed subdisk is relocated to two split subdisks. That is good news. These
subdisks are synchronized in the known way:

vxprint -rtg adg vol
[…]
v vol - ENABLED ACTIVE 33554432 SELECT - fsgen
pl vol-01 vol ENABLED STALE 33554432 CONCAT - WO
sd adg03-02 vol-01 adg03 16777216 18588752 0 c4t3d0 ENA
sd adg04-02 vol-01 adg04 16777216 14965680 18588752 c4t4d0 ENA
pl vol-02 vol ENABLED ACTIVE 33554432 CONCAT - RW
sd adg02-01 vol-02 adg02 0 33554432 0 c4t2d0 ENA
vxtask -g adg list
TASKID PTID TYPE/STATE PCT PROGRESS
 165 165 ATCOPY/R 07.15% 0/33554432/2398208 PLXATT vol vol-01 adg

Well, so far so good! But what about those subdisk attributes of the two relocated
subdisks storing the original disk media name and the original subdisk offset?

vxprint -g adg -sF '%name %orig_dmname %orig_dmoffset' -e \
 'sd_orig_dmname!=""'
adg03-02 adg01 0
adg04-02 adg01 18588752

That looks quite encouraging! The correct offsets were calculated and stored. We
expect a proper unrelocation with just one harmless disadvantage: Both subdisks will be
unrelocated, but not joined into one subdisk. In order to analyze the procedure, we turn on
Shell debugging once again.

vxunreloc -g adg adg01

The interesting part of the debugging output together with the content of the subdisk
creation template file:

+ vxmake -g adg -d /tmp/ur-mksd2869
+ vxsd -g adg -o rm -d mv adg03-02 adg01-UR-001
+ vxsd -g adg -o rm -d mv adg04-02 adg01-UR-002
cat /tmp/ur-mksd2869
sd adg01-UR-001 disk=adg01 offset=0 len=18588752 comment=UNRELOC
sd adg01-UR-002 disk=adg01 offset=18588752 len=14965680 comment=UNRELOC

426

Troubleshooting

OK, great! We still expect two separated subdisks on the original disk, but no!
vxunreloc was able to determine, that both subdisks being physically contiguous are also
contiguous within the plex. They are automatically joined. Just the name of the original
subdisk is lost.

Plex States Overview11.9	
It is sometimes useful to know what all the plex states mean that are output from vxprint
or vxinfo. Here is a list of plex states and their meaning, taken from the man page:

ACTIVE	�����������������������������������Either the volume is started and the plex is enabled, or the
volume was not stopped cleanly and the plex was valid when
the volume was stopped.

CLEAN	�����������������������������������The plex contains valid data and the volume was stopped
cleanly.

DCOSNP	��������������������������������A data change object (DCO) plex that is attached to a volume,
and which can be used by a snapshot plex to create a DCO
volume during a snapshot operation.

EMPTY	�����������������������������������The plex is part of a volume that has not yet been initialized.

IOFAIL 	�����������������������������������The plex was detached because of an uncorrectable I/O failure
on one of the subdisks in the plex.

LOG	���������������������������������������A dirty region logging (DRL) or RAID-5 log plex.

NODAREC 	�����������������������������No physical disk was found for one of the subdisks in the
plex. This implies either that the physical disk failed, making it
unrecognizable, or that the physical disk is no longer attached
through a known access path.

NODEVICE	�����������������������������A physical device could not be found corresponding to the
disk ID in the disk media record for one of the subdisks associ-
ated with the plex. The plex cannot be used until this condi-
tion is fixed, or the affected subdisk is dissociated.

OFFLINE 	��������������������������������The plex was disabled using the vxmend off operation.

REMOVED 	�����������������������������A physical disk used by one of the subdisks in the plex was
removed through administrative action with vxdg -k rmdisk.

SNAPATT	��������������������������������The plex is being attached as part of a backup operation by
the vxassist snapstart operation. When the attach is com-
plete, the condition changes to SNAPDONE. A system reboot
or manual starting of the volume removes the plex and all of
its subdisks.

427

Plex States Overview

SNAPDIS	��������������������������������A vxassist snapstart operation completed the process of
attaching the plex. It is a candidate for selection by the vxplex
snapshot operation. A system reboot or manual starting of the
volume dissociates the plex.

SNAPDONE 	���������������������������A vxassist snapstart operation completed the process of
attaching the plex. It is a candidate for selection by the
vxassist snapshot operation. A system reboot or manual start-
ing of the volume removes the plex and all of its subdisks.

SNAPTMP 	�����������������������������The plex is being attached as part of a backup operation by
the vxplex snapstart operation. When the attach is complete,
the condition changes to SNAPDIS. A system reboot or manual
starting of the volume dissociates the plex.

STALE	������������������������������������The plex does not contain valid data, either as a result of a
disk replacement affecting one of the subdisks in the plex, or
as a result of an administrative action on the plex such as
vxplex det.

TEMP	��������������������������������������The plex is associated temporarily as part of a current
operation, such as vxplex cp or vxplex att. A system reboot or
manual starting of a volume dissociates the plex.

TEMPRM	��������������������������������The plex was created for temporary use by a current opera-
tion. A system reboot or manual starting of a volume removes
the plex.

TEMPRMSD	���������������������������The plex and its subdisks were created for temporary use by a
current operation. A system reboot or manual starting of the
volume removes the plex and all of its subdisks.

